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Midterm 10/23

Guest Lecture 10/02, attendance is required.
Dafny Counter Example:

 dafny verify --extract-counterexample file.dfy

Verification debugging
* https://dafny.org/latest/DafnyRef/DafnyRef#sec-verification-debugging
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DPLL Algorithm

» a complete, backtracking-based search algorithm for deciding the
satisfiability of propositional logic formula in conjunctive normal form
(CNF).

» Davis—Putnam algorithm: Developed by Martin Davis and Hilary
Putnam in 1960.

» DPLL is introduced in 1961 by Martin Davis, George Logemann and
Donald W. Loveland and is a refinement of the Davis—Putnam
algorithm.



Review

» Propositional satisfiability problem
* Consider a propositional logic formula F.
* Find a model m such that

meF.

» Example: Give a model of p1 A(-p2 v p3), find a model (satisfying
assignment)

* m={pl—1, p2—0, p3—0}



Review

v

Propositional variables are also referred as atoms
A literal is either an atom or its negation
A clause is a disjunction of literals.

v

v

Since V is associative, commutative, and absorbs multiple
occurrences, a clause may be referred as a set of literals

Example:

* pis an atom but —p is not.

e =p and p both are literals.

* pVapVpVgisaclause.

* {p, —p, q} is the same clause.

v
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Conjunctive normal form(CNF)

>

>

A formula is in CNF if it is a conjunction of clauses.

Since A is associative, commutative, and absorbs multiple
occurrences, a CNF formula may be referred as a set of clauses

Example:

e =p and p both are in CNF.

* (pVv-=Q)A(rv-q)A-rin CNF.

* {(pV —Qq),(rv-q), -r}is the same CNF formula.
* {p,~q},{r,~q},{-r}} is the same CNF formula.



CNF as Input for SAT

» We assume that the input formula to a SAT solver is always in CNF.

» Tseitin encoding can convert each formula into a CNF without any
blowup.

e Introduces fresh variables

» Example
e z=XAYy addtheclausez< x Ay
»(XVAaz)A(YV-az)A (-X VYV Z)



A Naive SAT Solver

Brute Force Case Splitting: The SAT procedure chooses an atom p
from the formula F, splits it into cases p and —p, and recursively
applies itself to the cases until the formula becomes true or false.

Sat(F : formula ) : bool =
if F = T then return true
if F = | then return false
p = choose atom(F)
Ft = subst F p true
Ff = subst F p false
Sat Ft || tat Ff

Example: Sat(p V q V —r)



The Naive SAT Solver is Slow

» SAT is NP-Complete.

» The naive algorithm will experience the worst-case runtime of 2™

» The Procedure STA may conclude the formula is satisfiable early.
But for unsatisfiable formulas SAT won’t terminate until it has
exhausted all the possible variable assignments.



Partial Model
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Partial assignment assigns true/false values to some variables in
the formula. Some variables remain unassigned.

We will call a partial assignment of a formula F a partial model.
Under partial model m,

* aliteral L is true if m(L) = 1 and

* isfalseif m(L) = 0.

* Otherwise, L is unassigned.

Example:
* Formula: p1 A (mp2 Vv p3),
e Partial model m = {p1— 0, p2— 1}
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State of a Clause

» Under partial model m
* A clause Cis true if there is LeC such that L is true and
 Cisfalse if for each LeC, L is false.
e Otherwise, C is unassigned.

» Example: Consider partial model m = {p1— 0, p2— 1}
 States of the clause under m:
»plvp2Vvp3is True
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State of a Formula

» Under partial model m
* CNF F is true if for each CeF C is true and
* CNF F is false if there is CeF such that C is false.
* Otherwise, F is unassigned.

» Example: Consider partial model m = {p1—0, p2—1}
» States of the Formula under m:
> (p3V —pl) A (Pl Y, —-pZ) Is False

False
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Unit Clause and Unit Literal

» Cis a unit clause under m if exactly one literal LeC is unassigned
and the rest are false. L is called unit literal.

» Example
* Consider partial model m = {p1—0, p2—1}
> pl Vv -p3V-p2is a Unit clause.
- pl and —p2 are false. p3 is unassigned.
- p3is the unit literal.
»pl Vv -p3Vp4dis nota Unit clause
»pl Vv -p3Vp2is nota Unit clause
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DPLL (Davis-Putnam-Loveland-Logemann) Algorithm

» DPLL
* Maintains a partial model, initially @, assigns no variable.

* Assigns an unassigned variables O or 1 randomly one after
another

* Sometimes forced to choose assignments due to unit literals
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DPLL

DPLL(F)
/Il Input: CNF F
return DPLL(F,Q)

Output: sat / unsat
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DPLL

DPLL(F,m)
llinput: CNF F, partial assignment m

if Fis true under m then return sat
if F is false under m then return unsat

Output: sat / unsat
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DPLL

DPLL(F,m)
llInput: CNF F, partial assignment m  Output: sat / unsat

if Fis true under m then return sat
if F is false under m then return unsat

Choose an unassigned variable p and a random bit b € {0, 1}
if DPLL(F, m[p—Db]) == sat then

return sat
else

return DPLL(F, m[p—1-b])
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DPLL

DPLL(F,m)
llInput: CNF F, partial assignment m  Output: sat / unsat

if F is true under m then return sat
if Fis false under m then return unsat

if 3 unit literal p under m then
return DPLL(F,m[p—1])

if 3 unit literal -p under m then
return DPLL(F,m[p—0])

Choose an unassigned variable p and a random bit b € {0, 1}
if DPLL(F , m[p—Db]) == sat then

return sat
else

return DPLL(F, m[p—1-b])
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DPLL

DPLL(F,m)

llinput: CNF F, partial assignment m  Output: sat / unsat

if F is true under m then return sat

Backtrack at conflict

if Fis false under m then return unsat <—

if 3 unit literal p under m then

return DPLL(F,m[p—1]) _ _
if 3 unit literal ~p under m ther>| Unit Propagation

return DPLL(F,m[p—0])

Choose an unassigned variable p and a random bit b
if DPLL(F , m[p—Db]) == sat then
return sat
else
return DPLL(F, m[p—1-b])

e‘(ﬂ&

Decision

19



Three actions of DPLL

» A DPLL run consists of three types of actions
* Decision
* Unit propagation
* Backtracking
» Flips its decision, continue

20



DPLL Example

A formula with 8 clauses and 7 variables:

cl =(—-plvp2)

c2 =(-plv p3Vph)
c3=(—p2 Vv p4)
c4=(-p3 v 1p4)

c5 =(plvVvp5vV p2)
c6 = (p2 VvV p3)

c/ =(p2 Vv ~p3Vp7)
c8 = (p6 Vv —pb)
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DPLL Example

A formula with 8 clauses and 7 variables:

cl =(—-plvp2)

c2 =(-plv p3Vph)
c3=(—p2 Vv p4)
c4=(-p3 v 1p4)

c5 =(plvVvp5vV p2)
c6 = (p2 VvV p3)

c/ =(p2 Vv ~p3Vp7)
c8 = (p6 Vv —pb)

Blue: Causing unit propagation

0

Randomly assign p6

to be O
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DPLL Example

A formula with 8 clauses and 7 variables:

cl =(-plvp2)

c2 =(-plv p3Vph5)
c3=(—p2 Vv p4)
c4=(—-p3 VvV —p4)

c5 =(plvVvp5vV p2)
c6 = (p2 Vv p3)

c7 =(p2 Vv —p3V p7)
c8 = (p6 Vv ~p5)

Blue: Causing unit propagation

®
0

Ps

0, c8

P5 became a unit
literal.
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DPLL Example

cl =(-plvp2)

c2 =(-plv p3vVph)
c3=(-p2 Vv p4)
c4=(—-p3 Vv —p4)
c5=(plvp5vVvp2)
c6 = (p2 Vv p3)

c7 =(p2 Vv -p3V p7)
c8 = (p6 v —p5)

Blue: Causing unit propagation

Randomly assign p7
to be O
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DPLL Example

cl =(-plvp2)

c2 =(-plv p3vVph)
c3=(-p2 Vv p4)
c4=(—-p3 Vv —p4)

c5 =(plvp5vV p2)
c6 = (p2 Vv p3)

c7 =(p2 Vv -p3V p7)
c8 = (p6 v —p5)

Blue: Causing unit propagation
Green: true clauses

Randomly assign
plto be l
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DPLL Example

cl =(-plvp2)

c2 =(-plv p3Vph)
c3=(-p2 Vv p4)
c4=(—-p3 Vv —p4)

c5 =(plvp5vV p2)
c6 = (p2 Vv p3)

c7 =(p2 Vv -p3V p7)
c8 = (p6 v —p5)

Blue: Causing unit propagation
Green: true clauses "



DPLL Example

cl =(-plvp2)

c2 =(-plv p3Vph)
c3=(-p2 Vv p4)
c4=(—-p3 Vv —p4)

c5 =(plvp5vV p2)
c6 = (p2 Vv p3)

c7 =(p2 Vv -p3V p7)
c8 = (p6 v —p5)

Blue: Causing unit propagation
Green: true clauses .



DPLL Example

cl =(-plvp2)

c2 =(-plv p3vVphH)
c3=(-p2 Vv p4)
c4=(—p3 VvV —p4)

c5 =(plvp5vV p2)
c6 = (p2 Vv p3)

c7 =(p2 Vv —p3V p7)
c8 = (p6 v —p5)

P4 J"———— Unit literal
1, c3

Blue: Causing unit propagation c4 conflict
Green: true clauses .



DPLL Example

cl =(-plvp2)

c2 =(-plv p3Vph)
c3=(-p2 Vv p4)
c4=(—p3 VvV —p4)

c5 =(plvp5vV p2)
c6 = (p2 Vv p3)

c7 =(p2 Vv —p3V p7)
c8 = (p6 v —p5)

Blue: Causing unit propagation
Green: true clauses

1c2 ] [\ Backtrack

to the last
@D decision

1, c3

c4 conflict
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DPLL Optimizations

» DPLL allows many optimizations.
* clause learning

* As we decide and propagate, we construct a data structure,
called implication graph, to observe the run and avoid
unnecessary backtracking.

30



DPLL Run and Decision Level

» Run:
* We call the current partial model a run of DPLL.
* In the previous example, here is a run that has not reached to the

conflict yet: . 0 . o,c8

. 0
» Decision level

* During a run, the decision level of a true literal is the number of
decisions after which the literal was made true.

» We write -p5@1 to indicate that —-p5 was set to true after one
decision.

» Similarly, we write -p7@2 and -p6@1.
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Implication Graph

» During the DPLL run, we maintain the following data structure:

* Under a partial model m, the implication graph is a labeled
DAG(N,E), where:
> N is the set of true literals under m and a conflict node
» E ={(L1, L2)|-L1 € causeClause(L2) and L2 # L1}

e causeClause(L) :
» clause due to which unit propagation made L true
> @ for the literals of the decision variables

L1V L2
L1 —L2

» We also annotate each node with decision level.
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Implication Graph

cl =(-plvp2)

c2 =(—-plv p3vVph)
c3=(—p2 V p4)
c4=(-p3 VvV -p4)

c5 =(plvp5vV p2)
c6 = (p2 Vv p3)

c/ =(p2V ~p3Vp7)
c8 = (p6 v —pb5)

1,c2 4§
()
1,cl ¢

P4
1, c3

c4 conflict
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Implication Graph

cl =(-plvp2)

c2 =(—-plv p3vVph)
c3=(—p2 V p4)
c4=(-p3 VvV -p4)

c5 =(plvp5vV p2)
c6 = (p2 Vv p3)

c/ =(p2V ~p3Vp7)
c8 = (p6 v —pb5)

1, c3

c4 conflict

—pe @1
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Implication Graph

cl =(-plvp2)

c2 =(—-plv p3vVph)
c3=(—p2 V p4)
c4=(-p3 VvV -p4)

c5 =(plvp5vV p2)
c6 = (p2 Vv p3)

c/ =(p2V ~p3Vp7)
c8 = (p6 v —pb5)

1, c3

c4 conflict
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Implication Graph

cl =(-plvp2)

c2 =(—-plv p3vVph)
c3=(—p2 V p4)
c4=(-p3 VvV -p4)

c5 =(plvp5vV p2)
c6 = (p2 Vv p3)

c/ =(p2V ~p3Vp7)
c8 = (p6 v —pb5)

1, c3

c4 conflict

—p70@2
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Implication Graph

cl =(-plvp2)

c2 =(—-plv p3vVph)
c3=(—p2 V p4)
c4=(-p3 VvV -p4)

c5 =(plvp5vV p2)
c6 = (p2 Vv p3)

c/ =(p2V ~p3Vp7)
c8 = (p6 v —pb5)

1, c3

c4 conflict

—p70@2

—p50@1| [p; @3
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Implication Graph

cl =(-plvp2)

c2 =(—-plv p3vVph)
c3=(—p2 V p4)
c4=(-p3 VvV -p4)

c5 =(plvp5vV p2)
c6 = (p2 Vv p3)

c/ =(p2V ~p3Vp7)
c8 = (p6 v —pb5)

1, c3

c4 conflict

—ps@Ll| [p1@3
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Implication Graph

cl =(-plvp2)

c2 =(—-plv p3vVph)
c3=(—p2 V p4)
c4=(-p3 VvV -p4)

c5 =(plvp5vV p2)
c6 = (p2 Vv p3)

c/ =(p2V ~p3Vp7)
c8 = (p6 v —pb5)

1, c3

c4 conflict

p1@3

c2 | cl

p2@3
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Implication Graph

cl =(-plvp2)
c2 =(—-plv p3vVph)
c3=(—p2 V p4)

p10@3
c4=(-p3 vV ~p4)
c5 =(pl Vv p5V -p2) c2 | cl
c6 = (p2 Vv p3) .
c7 =(p2V ~p3V p7) p2©3
c8 = (p6 Vv —p5) 1 c3
P4 P4 @3

1, c3

c4 conflict
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Implication Graph

cl =(-plvp2)

c2 =(-plvVv p3Vph)
c3=(—p2 V p4)
c4=(-p3 VvV -p4)

c5 =(plvp5vV p2)
c6 = (p2 Vv p3)

c/ =(p2V ~p3Vp7)
c8 = (p6 v —pb5)

1, c3

c4 conflict

p1©3

c2

~

L~

cl

p2@©3

\

’

c3

ps©3

- C4
conflict
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Conflict Clause

» We traverse the implication graph —PeQ1
backwards to find the set of decisions 8
that caused the conflict. d
» The clause of the negations of the —p7@2| |—ps@1| |p;@3
causing decisions is called conflict
clause. c2 ﬁ cl
» Example: Conflict clause: p6 v -pl p3@3 p2@3
* p6 is set to O by the first decision c3
. pl IS set tq 1 by the third decision, c4 \(’Q3
literal =p1 is added in the conflict Pa
clause. A c4
* p5 decision does not contribute to the conflict

conflict, nothing is added
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Clause Learning Example

21 3

6 7

5 8
7 9
2 9
A

7 6

o0 —=
i

O

N O
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Clause learning

» Clause learning heuristics
 add conflict clause in the input clauses and

* backtrack to the second last conflicting decision, and proceed like
DPLL

» Theorem: Adding conflict clause
* Does not change the set of satisfying assignments

* Implies that the conflicting partial assignment will never be tried
again

» Multiple clauses can satisfy the above two conditions.

» If a clause satisfies the above two conditions, it is a
conflict clause.
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Clause learning:Example:

» In our running example, we —psQL
added conflict clause p6 v —p1. c8
I(;/in’zfplg ;\\ ';1'; False 02| [ps@l]| [p@3
FA (p6Vpl) c2 ﬁ cl
p3@3| |p2@3
» The second last decision in the 3
clause is p6 = 0. We backtrack cl -
L L p4@3
to it without flipping it. We run 1
unit propagation p1 will be —onflict

forced to be 0 due to the conflict
clause.
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Benefit of Adding Conflict Clauses

Prunes away search space
Records past work of the SAT solver
Enables many other heuristics without much complications.
Example:
* In the previous example, we made decisions : m(p6) =0, m(p7) =
0,and m(pl) =1
* We learned a conflict clause : p6 v —pl
* Adding this clause to the input clauses results in
»m(p6) =0, m(p7) =1, and m(pl) = 1 will never be tried
» M(p6) = 0 and m(pl) = 1 will never occur simultaneously.

v

v

v

v
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DPLL to CDCL (conflict driven clause learning)

» The optimized algorithm is called CDCL(conflict driven clause
learning) instead of DPLL.

» Impact of clause learning was profound.

a7



CDCL as an algorithm

Input: CNF F
m := 0: dl := 0; dstack := \x.0; —{dl stands for
m := UNITPROPAGATION(m, F); \decision level
do

» UNITPROPAGATION(m, F) - applies unit propagation
and extends m

// backtracking
while F is false under m do
if d/ = 0 then return unsat;

(C,dl) := ANALYZECONFLICT(m, F); » ANALYZECONFLICT(m, F) - returns a conflict clause
m.resize(dstack(dl)); F := FU{C}; learned using implication graph and a decision level
m := UNITPROPAGATION(m, F); upto which the solver needs to backtrack

// Boolean decision

if F is unassigned under m th%[dstack recortl:ls history]
dstack(dl) := m.size(); of backtracking

dl := dl + 1; m := DECIDE(m, F); » DECIDE(m, F) - chooses an unassigned variable in m
m := UNITPROPAGATION(m, F) ; and assigns a Boolean value

while F is unassigned or false under m,
return sat

48



Efficiency of SAT solvers over the years
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Impact of SAT technology

» Impactis enormous.

» Probably, the greatest achievement of the first decade of this century in science
after sequencing of human genome

» Afew are listed here

» | Hardware verification and design assistance
Almost all hardware/EDA companies have their own SAT solver

» | Planning: many resource allocation problems are convertible to SAT | Security:
analysis of crypto algorithms
| Solving hard problems, e. g., travelling salesman problem
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