
Announcements

Midterm 10/23

Guest Lecture 10/02, attendance is required. 

Dafny Counter Example:

• dafny verify --extract-counterexample file.dfy

Verification debugging

• https://dafny.org/latest/DafnyRef/DafnyRef#sec-verification-debugging
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DPLL Algorithm

a complete, backtracking-based search algorithm for deciding the 

satisfiability of propositional logic formula in conjunctive normal form 

(CNF).

Davis–Putnam algorithm: Developed by Martin Davis and Hilary 

Putnam in 1960.

DPLL is introduced in 1961 by Martin Davis, George Logemann and 

Donald W. Loveland and is a refinement of the Davis–Putnam 

algorithm. 
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Review

Propositional satisfiability problem 

• Consider a propositional logic formula F. 

• Find a model m such that 

   m ⊨ F . 

Example: Give a model of p1 ∧(¬p2 ∨ p3), find a model (satisfying 

assignment)

• m = {p1→1, p2→0, p3→0}
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Review

Propositional variables are also referred as atoms

 A literal is either an atom or its negation

A clause is a disjunction of literals. 

Since ∨ is associative, commutative, and absorbs multiple 

occurrences, a clause may be referred as a set of literals 

Example: 

• p is an atom but ¬p is not.

• ¬p and p both are literals.

• p ∨ ¬p ∨ p ∨ q is a clause. 

• {p, ¬p, q} is the same clause. 
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Conjunctive normal form(CNF) 

A formula is in CNF if it is a conjunction of clauses. 

Since ∧ is associative, commutative, and absorbs multiple 

occurrences, a CNF formula may be referred as a set of clauses 

Example:

• ¬p and p both are in CNF.

• (p ∨ ¬q) ∧ (r ∨ ¬q) ∧ ¬r in CNF.

• {(p ∨ ¬q),(r ∨ ¬q), ¬r} is the same CNF formula.

• {{p,¬q},{r,¬q},{¬r}} is the same CNF formula. 
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CNF as Input for SAT

We assume that the input formula to a SAT solver is always in CNF. 

Tseitin encoding can convert each formula into a CNF without any 

blowup.

• introduces fresh variables 

Example

• z = x ∧ y  add the clause z  x ∧ y 

➢ (x ∨ ¬z) ∧ (y ∨ ¬z) ∧ (¬x ∨ ¬y ∨ z) 
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A Naive SAT Solver

Brute Force Case Splitting: The SAT procedure chooses an atom p 

from the formula F, splits it into cases p and ¬p, and recursively 

applies itself to the cases until the formula becomes true or false. 
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Example: Sat(p ∨ q ∨ ¬r) 

Sat(F : formula ) : bool =

   if F = ⟙ then return true
   if F = ⟘ then return false
   p = choose_atom(F) 

   Ft = subst F p true

   Ff = subst F p false

   Sat Ft || tat Ff



The Naive SAT Solver is Slow
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SAT is NP-Complete.

The naïve algorithm will experience the worst-case runtime of 2n.

The Procedure STA may conclude the formula is satisfiable early. 

But for unsatisfiable formulas SAT won’t terminate until it has 

exhausted all the possible variable assignments. 



Partial Model 

Partial assignment assigns true/false values to some variables in 

the formula. Some variables remain unassigned. 

We will call a partial assignment of a formula F a partial model. 

Under partial model m,

• a literal L is true if m(L) = 1 and 

• is false if m(L) = 0. 

• Otherwise, L is unassigned. 

 

Example: 

• Formula: p1 ∧ (¬p2 ∨ p3), 

• Partial model m = {p1→ 0, p2→ 1}
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State of a Clause 

Under partial model m

• A clause C is true if there is L∈C such that L is true and 

• C is false if for each L∈C, L is false. 

• Otherwise, C is unassigned. 

Example: Consider partial model m = {p1→ 0, p2→ 1}

• States of the clause under m:

➢ p1 ∨ p2 ∨ p3  is True
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State of a Formula

Under partial model m

• CNF F is true if for each C∈F C is true and 

• CNF F is false if there is C∈F such that C is false. 

• Otherwise, F is unassigned. 

Example: Consider partial model m = {p1→0, p2→1}

• States of the Formula under m:

➢ (p3 ∨ ¬p1) ∧ (p1 ∨ ¬p2)  is False
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Unit Clause and Unit Literal 

C is a unit clause under m if exactly one literal L∈C is unassigned 

and the rest are false. L is called unit literal. 

Example

• Consider partial model m = {p1→0, p2→1}

➢ p1 ∨ ¬p3 ∨ ¬p2 is a Unit clause. 

• p1 and ¬p2 are false. p3 is unassigned. 

• p3 is the unit literal.

➢ p1 ∨ ¬p3 ∨ p4 is not a Unit clause

➢ p1 ∨ ¬p3 ∨ p2 is not a Unit clause
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DPLL (Davis-Putnam-Loveland-Logemann) Algorithm 

DPLL

• Maintains a partial model, initially ∅, assigns no variable.

• Assigns an unassigned variables 0 or 1 randomly one after 

another

• Sometimes forced to choose assignments due to unit literals
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DPLL

DPLL(F)

  // Input: CNF F Output: sat / unsat 

  return DPLL(F,∅)
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DPLL

DPLL(F,m) 

  //Input: CNF F, partial assignment m Output: sat / unsat

  if F is true under m then return sat 

  if F is false under m then return unsat
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DPLL

DPLL(F,m) 

  //Input: CNF F, partial assignment m Output: sat / unsat

  if F is true under m then return sat 

  if F is false under m then return unsat

  

 …

 Choose an unassigned variable p and a random bit b ∈ {0, 1} 

 if DPLL(F, m[p→b]) == sat then 

   return sat 

 else 

   return DPLL(F, m[p→1-b]) 
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DPLL

DPLL(F,m) 

 //Input: CNF F, partial assignment m Output: sat / unsat

  if F is true under m then return sat 

  if F is false under m then return unsat

  if ∃ unit literal p under m then  

    return DPLL(F,m[p→1]) 

  if ∃ unit literal ¬p under m then 

    return DPLL(F,m[p→0]) 

  Choose an unassigned variable p and a random bit b ∈ {0, 1} 

  if DPLL(F , m[p→b]) == sat then 

    return sat 

  else 

    return DPLL(F, m[p→1-b]) 
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DPLL

DPLL(F,m) 

 //Input: CNF F, partial assignment m Output: sat / unsat

  if F is true under m then return sat 

  if F is false under m then return unsat

  

if ∃ unit literal p under m then  

    return DPLL(F,m[p→1]) 

if ∃ unit literal ¬p under m then 

    return DPLL(F,m[p→0]) 

  

Choose an unassigned variable p and a random bit b ∈ {0, 1} 

  if DPLL(F , m[p→b]) == sat then 

    return sat 

  else 

    return DPLL(F, m[p→1-b]) 
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Unit Propagation

Decision

Backtrack at conflict



Three actions of DPLL 

A DPLL run consists of three types of actions

• Decision

• Unit propagation

• Backtracking

➢Flips its decision, continue 
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DPLL Example

A formula with 8 clauses and 7 variables:

c1 = (¬p1 ∨ p2)

c2 = (¬p1 ∨ p3 ∨ p5)

c3=(¬p2 ∨ p4) 

c4=(¬p3 ∨ ¬p4)

c5 = (p1 ∨ p5 ∨ ¬p2)

c6 = (p2 ∨ p3)

c7 = (p2 ∨ ¬p3 ∨ p7)

c8 = (p6 ∨ ¬p5) 
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DPLL Example

A formula with 8 clauses and 7 variables:

c1 = (¬p1 ∨ p2)

c2 = (¬p1 ∨ p3 ∨ p5)

c3=(¬p2 ∨ p4) 

c4=(¬p3 ∨ ¬p4)

c5 = (p1 ∨ p5 ∨ ¬p2)

c6 = (p2 ∨ p3)

c7 = (p2 ∨ ¬p3 ∨ p7)

c8 = (p6 ∨ ¬p5) 
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DPLL Example

A formula with 8 clauses and 7 variables:

c1 = (¬p1 ∨ p2)

c2 = (¬p1 ∨ p3 ∨ p5)

c3=(¬p2 ∨ p4) 

c4=(¬p3 ∨ ¬p4)

c5 = (p1 ∨ p5 ∨ ¬p2)

c6 = (p2 ∨ p3)

c7 = (p2 ∨ ¬p3 ∨ p7)

c8 = (p6 ∨ ¬p5) 

Blue: Causing unit propagation
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DPLL Example

c1 = (¬p1 ∨ p2)

c2 = (¬p1 ∨ p3 ∨ p5)

c3=(¬p2 ∨ p4) 

c4=(¬p3 ∨ ¬p4)

c5 = (p1 ∨ p5 ∨ ¬p2)

c6 = (p2 ∨ p3)

c7 = (p2 ∨ ¬p3 ∨ p7)

c8 = (p6 ∨ ¬p5) 

Blue: Causing unit propagation
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DPLL Example

c1 = (¬p1 ∨ p2)

c2 = (¬p1 ∨ p3 ∨ p5)

c3=(¬p2 ∨ p4) 

c4=(¬p3 ∨ ¬p4)

c5 = (p1 ∨ p5 ∨ ¬p2)

c6 = (p2 ∨ p3)

c7 = (p2 ∨ ¬p3 ∨ p7)

c8 = (p6 ∨ ¬p5) 

Blue: Causing unit propagation

Green: true clauses
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DPLL Example

c1 = (¬p1 ∨ p2)

c2 = (¬p1 ∨ p3 ∨ p5)

c3=(¬p2 ∨ p4) 

c4=(¬p3 ∨ ¬p4)

c5 = (p1 ∨ p5 ∨ ¬p2)

c6 = (p2 ∨ p3)

c7 = (p2 ∨ ¬p3 ∨ p7)

c8 = (p6 ∨ ¬p5) 

26

p6

0
p5

0,c8
p7

0

p1
1

Blue: Causing unit propagation

Green: true clauses

p3

1, c2
Unit literal



DPLL Example

c1 = (¬p1 ∨ p2)

c2 = (¬p1 ∨ p3 ∨ p5)

c3=(¬p2 ∨ p4) 

c4=(¬p3 ∨ ¬p4)

c5 = (p1 ∨ p5 ∨ ¬p2)

c6 = (p2 ∨ p3)

c7 = (p2 ∨ ¬p3 ∨ p7)

c8 = (p6 ∨ ¬p5) 
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DPLL Example

c1 = (¬p1 ∨ p2)

c2 = (¬p1 ∨ p3 ∨ p5)

c3=(¬p2 ∨ p4) 

c4=(¬p3 ∨ ¬p4)

c5 = (p1 ∨ p5 ∨ ¬p2)

c6 = (p2 ∨ p3)

c7 = (p2 ∨ ¬p3 ∨ p7)

c8 = (p6 ∨ ¬p5) 
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DPLL Example

c1 = (¬p1 ∨ p2)

c2 = (¬p1 ∨ p3 ∨ p5)

c3=(¬p2 ∨ p4) 

c4=(¬p3 ∨ ¬p4)

c5 = (p1 ∨ p5 ∨ ¬p2)

c6 = (p2 ∨ p3)

c7 = (p2 ∨ ¬p3 ∨ p7)

c8 = (p6 ∨ ¬p5) 
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DPLL Optimizations

DPLL allows many optimizations.

• clause learning

• As we decide and propagate, we construct a data structure, 

called implication graph, to observe the run and avoid 

unnecessary backtracking. 
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Run: 

• We call the current partial model a run of DPLL. 

• In the previous example, here is a run that has not reached to the 

conflict yet: 

Decision level

• During a run, the decision level of a true literal is the number of 

decisions after which the literal was made true. 

➢We write ¬p5@1 to indicate that ¬p5 was set to true after one 

decision. 

➢Similarly, we write ¬p7@2 and ¬p6@1. 

DPLL Run and Decision Level

31

p6

0
p5

0,c8
p7

0



Implication Graph 

During the DPLL run, we maintain the following data structure: 

• Under a partial model m, the implication graph is a labeled 

DAG(N,E), where:

➢ N is the set of true literals under m and a conflict node

➢ E = {(L1, L2)|¬L1 ∈ causeClause(L2) and L2 ≠ ¬L1} 

• causeClause(L) :

➢ clause due to which unit propagation made L true

➢  ∅ for the literals of the decision variables 

We also annotate each node with decision level. 
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Implication Graph 

c1 = (¬p1 ∨ p2)

c2 = (¬p1 ∨ p3 ∨ p5)

c3=(¬p2 ∨ p4) 

c4=(¬p3 ∨ ¬p4)

c5 = (p1 ∨ p5 ∨ ¬p2)

c6 = (p2 ∨ p3)

c7 = (p2 ∨ ¬p3 ∨ p7)

c8 = (p6 ∨ ¬p5) 
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Conflict Clause
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We traverse the implication graph 

backwards to find the set of decisions 

that caused the conflict. 

The clause of the negations of the 

causing decisions is called conflict 

clause. 

Example: Conflict clause: p6 ∨ ¬p1

• p6 is set to 0 by the first decision 

• p1 is set to 1 by the third decision, 

literal ¬p1 is added in the conflict 

clause. 

• p5 decision does not contribute to the 
conflict, nothing is added 



Clause Learning Example
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Clause learning 

Clause learning heuristics

• add conflict clause in the input clauses and

• backtrack to the second last conflicting decision, and proceed like 

DPLL 

Theorem: Adding conflict clause

• Does not change the set of satisfying assignments

• Implies that the conflicting partial assignment will never be tried 

again 

Multiple clauses can satisfy the above two conditions.

If a clause satisfies the above two conditions, it is a 

conflict clause. 
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Clause learning:Example:  

In our running example, we 

added conflict clause p6 ∨ ¬p1.

(¬p6 ∧ p1) ∧ F ⊨ False

F ∧ ¬ (¬p6 ∧ p1) 

F ∧ (p6 ∨ p1) 

The second last decision in the 

clause is p6 = 0. We backtrack 

to it without flipping it. We run 

unit propagation p1 will be 

forced to be 0 due to the conflict 

clause. 
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Benefit of Adding Conflict Clauses 

Prunes away search space

Records past work of the SAT solver

Enables many other heuristics without much complications. 

Example:

• In the previous example, we made decisions : m(p6) = 0, m(p7) = 

0, and m(p1) = 1 

• We learned a conflict clause : p6 ∨ ¬p1 

• Adding this clause to the input clauses results in

➢m(p6) = 0, m(p7) = 1, and m(p1) = 1 will never be tried 

➢m(p6) = 0 and m(p1) = 1 will never occur simultaneously. 
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DPLL to CDCL (conflict driven clause learning) 

The optimized algorithm is called CDCL(conflict driven clause 

learning) instead of DPLL. 

Impact of clause learning was profound.
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CDCL as an algorithm 
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Efficiency of SAT solvers over the years 

49



Impact of SAT technology 

Impact is enormous. 

Probably, the greatest achievement of the first decade of this century in science 
after sequencing of human genome 

A few are listed here 

I Hardware verification and design assistance
Almost all hardware/EDA companies have their own SAT solver 

I Planning: many resource allocation problems are convertible to SAT I Security: 
analysis of crypto algorithms
I Solving hard problems, e. g., travelling salesman problem 
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