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The Spectrum of Program Validation Tools
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Introduction

Verification and Static Analysis are great

• Lots of interesting ideas and tools 

But can developers use it? 

• Formal verification of computer programs are hard.  

• Commercial static analysis tools have a huge code mass to deal 

with developer confusion, false positives, warning management, 

etc. 
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Testing is not Enough
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int f(int64_t a, int64_t b){

if(a == 324572)

    if(b == 65535)

assert fail;

else

…

}

Testing works, but each test only explores one possible execution 

assert( f(3) == 5)

Can testing detect whether the following program throws an exception?



Symbolic Execution

Symbolic execution is a way to generalize testing. 

• A bug finding technique that is easy to use

• No false positives

• Produces a concrete input (a test case) on which the program will 

fail to meet the specification

• But it cannot, in general, prove the absence of errors

Key idea

• Evaluate the program on symbolic input values

• Use an automated theorem prover to check whether there are 

corresponding concrete input values that make the program fail.
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A Brief history of Symbolic Execution

1976: A system to generate test data and symbolically execute 

programs (Lori Clarke)

1976: Symbolic execution and program testing (James King)

2005-present: practical symbolic execution

• Using SMT solvers

• Heuristics to control exponential explosion

• Heap modeling and reasoning about pointers

• Environment modeling

• Dealing with solver limitations
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Symbolic Execution Example 
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Insights

Execute the program on symbolic values.

Symbolic state maps variables to symbolic values.

Path condition is a quantifier-free formula over the symbolic inputs 

that encodes all branch decisions taken so far.

All paths in the program form its execution tree, in which some paths 

are feasible, and some are infeasible.
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Insights

Each symbolic execution path stands for many program runs 

• In fact, exactly the set of runs whose concrete values satisfy the 

path condition 

Thus, we can cover a lot more of the program’s execution space 

than testing can 
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Practical Issues

Loops and recursion: infinite execution trees

Path explosion: exponentially many paths

Heap modeling: symbolic data structures and pointers

Solver limitations: dealing with complex path conditions

Environment modeling: dealing with native / system / library calls
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Loops and Recursion

Dealing with infinite execution 

trees:

• Finitize paths by unrolling loops 

and recursion (bounded 

verification)

• Finitize paths by limiting the 

size of path conditions 

(bounded verification)

• Use loop invariants (verification)
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Path Explosion

Achieving good coverage in the presence of exponentially 

many paths:

• Select next branch at random

➢ sacrifice completeness, but still better than ad-hoc testing/fuzzing

• Select next branch based on coverage

• Interleave symbolic execution with random testing
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Heap modeling

Modeling symbolic heap values and 

pointers

• Bit-precise memory modeling with 

the theory of arrays (EXE, Klee, 

SAGE)

• Lazy concretization (JPF)

• Concolic lazy concretization 

(CUTE)
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void f(int i, int j){

  int a[1] = 0;

  if(i > 1 || j > 1)

    return;

  a[i] = 5;

  assert(a[j] != 5);

}

What values of i and j to 

make the assert() fail?



Solver limitations

Reducing the demands on the solver:

• On-the-fly expression simplification

• Incremental solving

• Solution caching and reuse

• Substituting concrete values for symbolic in complex path 

conditions (CUTE)
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Environment modeling

The software components must interact with the external 

environments

• Dealing with system / native / library calls:

The symbolic executor must model the environment

• Partial state concretization

• Manual models of the environment (Klee)

➢ file systems

➢ network stack
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Recent Success

SAGE 

• Microsoft internal tool 

• Symbolic execution to find bugs in file parsers 

➢ - E.g.,JPEG, DOCX, PPT,etc 

• Cluster of n machines continually running SAGE

KLEE

• Open source symbolic executor 

• Runs on top of LLVM

• Has found lots of problems in open-source software 

Angr, BAP/Mayhem,Pex, jCute, Java PathFinder
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Summary

Symbolic execution is a bug finding technique based on automated 

theorem proving: 

Evaluates the program on symbolic inputs, and a solver finds 

concrete values for those inputs that lead to errors. 

Many success stories in the open-source community and industry. 
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Demo
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Angr Example
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https://github.com/cmsc433/Fall2024_public/tree/ma

in/code/symbolic



Generate Tests to Cover All Branches
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f2(a,b,c){

  x = 1

  y = 0

  if a != 0 :

    y = x + 3

    if b == y :

      if c == a :

        x = 4 * b

      else:

        x = 8 * (a + b)

    else:

      if c == (4 + a) :

        x = 4 * b

      else:

        x = 2 * (a + b)

  else:

    y = x + 10

    if b == y :

       x = 3 * (a + b)

    else:

       if c == x :

          x = 4 * (a + b)

       else:

          x = 4 * a

  return x;

}



Generate Tests to Cover All Branches
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f2(a,b,c){

  x = 1

  y = 0

  if a != 0 :

    y = x + 3

    if b == y :

      if c == a :

        x = 4 * b

      else:

        x = 8 * (a + b)

    else:

      if c == (4 + a) :

        x = 4 * b

      else:

        x = 2 * (a + b)

  else:

    y = x + 10

    if b == y :

       x = 3 * (a + b)

    else:

       if c == x :

          x = 4 * (a + b)

       else:

          x = 4 * a

  return x;

}

Symbolic execution path conditions:

a == 0,b == (1 + 10)

a != 0,b == (1 + 3)

a == 0,b != (1 + 10),c != 1

a == 0,b != (1 + 10),c == 1

a != 0,b != (1 + 3),c != a

a != 0,b != (1 + 3),c == a
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