
CMSC 433

Programming Language Technologies and

Paradigms

Symbolic Execution

1CMSC433 Fall 2024

Based on the slides from Jeff Foster, Mike Hicks, and Emina Torlak

The Spectrum of Program Validation Tools

2

Introduction

Verification and Static Analysis are great

• Lots of interesting ideas and tools

But can developers use it?

• Formal verification of computer programs are hard.

• Commercial static analysis tools have a huge code mass to deal

with developer confusion, false positives, warning management,

etc.

3

Testing is not Enough

4

int f(int64_t a, int64_t b){

if(a == 324572)

 if(b == 65535)

assert fail;

else

…

}

Testing works, but each test only explores one possible execution

assert(f(3) == 5)

Can testing detect whether the following program throws an exception?

Symbolic Execution

Symbolic execution is a way to generalize testing.

• A bug finding technique that is easy to use

• No false positives

• Produces a concrete input (a test case) on which the program will

fail to meet the specification

• But it cannot, in general, prove the absence of errors

Key idea

• Evaluate the program on symbolic input values

• Use an automated theorem prover to check whether there are

corresponding concrete input values that make the program fail.

5

A Brief history of Symbolic Execution

1976: A system to generate test data and symbolically execute

programs (Lori Clarke)

1976: Symbolic execution and program testing (James King)

2005-present: practical symbolic execution

• Using SMT solvers

• Heuristics to control exponential explosion

• Heap modeling and reasoning about pointers

• Environment modeling

• Dealing with solver limitations

6

Symbolic Execution Example

7

x=0, y=0, z=0

Symbolic Execution Example

8

x=0, y=0, z=0

αt

Symbolic Execution Example

9

x=0, y=0, z=0

αt

x=-2

Symbolic Execution Example

10

x=0, y=0, z=0

α
t

x=-2

β < 5
t

Symbolic Execution Example

11

x=0, y=0, z=0

α
t

x=-2

β < 5
t

z=2

Symbolic Execution Example

12

x=0, y=0, z=0

α
t

x=-2

β < 5
t

z=2

α∧(β<5)

path condition

Symbolic Execution Example

13

x=0, y=0, z=0

α
t

x=-2

β < 5
t f

z=2

α∧(β<5)

α∧(β≥5)

path condition

Symbolic Execution Example

14

x=0, y=0, z=0

α
t f

x=-2 β < 5

β < 5
t f

z=2

α∧(β<5)

α∧(β≥5)

path condition

Symbolic Execution Example

15

x=0, y=0, z=0

α
t f

x=-2 β < 5

β < 5
t f

f

z=2

α∧(β<5)

α∧(β≥5)

¬α∧(β≥5)

path condition

Symbolic Execution Example

16

x=0, y=0, z=0

α
t f

x=-2 β < 5

β < 5
t f

f

z=2

α∧(β<5)

α∧(β≥5)

¬α∧(β≥5)

t

¬α∧γ

path condition

Symbolic Execution Example

17

x=0, y=0, z=0

α
t f

x=-2 β < 5

β < 5
t f

f

z=2

α∧(β<5)

α∧(β≥5)

¬α∧(β≥5)

t

¬α∧γ
t

path condition

Symbolic Execution Example

18

x=0, y=0, z=0

α
t f

x=-2 β < 5

β < 5
t f

t f

z=2

α∧(β<5)

α∧(β≥5)

¬α∧γ
¬α∧(β≥5)

t

y=1

z=2

assert(x+y+z!=3) ✘

Symbolic Execution Example

19

x=0, y=0, z=0

α
t f

x=-2 β < 5

β < 5
t f

t f

z=2

α∧(β<5)

α∧(β≥5)

¬α∧γ
¬α∧(β≥5)

t

y=1

z=2

¬α∧(β<5)∧γ

✘

Symbolic Execution Example

20

x=0, y=0, z=0

α
t f

x=-2 β < 5

β < 5
t f

t f

z=2

α∧(β<5)

α∧(β≥5)

¬α∧γ
¬α∧(β≥5)

t f

y=1

z=2

¬α∧(β<5)∧γ

✘

z=2

¬α∧(β<5)∧¬γ

Insights

Execute the program on symbolic values.

Symbolic state maps variables to symbolic values.

Path condition is a quantifier-free formula over the symbolic inputs

that encodes all branch decisions taken so far.

All paths in the program form its execution tree, in which some paths

are feasible, and some are infeasible.

21

Insights

Each symbolic execution path stands for many program runs

• In fact, exactly the set of runs whose concrete values satisfy the

path condition

Thus, we can cover a lot more of the program’s execution space

than testing can

22

Practical Issues

Loops and recursion: infinite execution trees

Path explosion: exponentially many paths

Heap modeling: symbolic data structures and pointers

Solver limitations: dealing with complex path conditions

Environment modeling: dealing with native / system / library calls

23

Loops and Recursion

Dealing with infinite execution

trees:

• Finitize paths by unrolling loops

and recursion (bounded

verification)

• Finitize paths by limiting the

size of path conditions

(bounded verification)

• Use loop invariants (verification)

24

Path Explosion

Achieving good coverage in the presence of exponentially

many paths:

• Select next branch at random

➢ sacrifice completeness, but still better than ad-hoc testing/fuzzing

• Select next branch based on coverage

• Interleave symbolic execution with random testing

25

Heap modeling

Modeling symbolic heap values and

pointers

• Bit-precise memory modeling with

the theory of arrays (EXE, Klee,

SAGE)

• Lazy concretization (JPF)

• Concolic lazy concretization

(CUTE)

26

void f(int i, int j){

 int a[1] = 0;

 if(i > 1 || j > 1)

 return;

 a[i] = 5;

 assert(a[j] != 5);

}

What values of i and j to

make the assert() fail?

Solver limitations

Reducing the demands on the solver:

• On-the-fly expression simplification

• Incremental solving

• Solution caching and reuse

• Substituting concrete values for symbolic in complex path

conditions (CUTE)

27

Environment modeling

The software components must interact with the external

environments

• Dealing with system / native / library calls:

The symbolic executor must model the environment

• Partial state concretization

• Manual models of the environment (Klee)

➢ file systems

➢ network stack

28

Recent Success

SAGE

• Microsoft internal tool

• Symbolic execution to find bugs in file parsers

➢ - E.g.,JPEG, DOCX, PPT,etc

• Cluster of n machines continually running SAGE

KLEE

• Open source symbolic executor

• Runs on top of LLVM

• Has found lots of problems in open-source software

Angr, BAP/Mayhem,Pex, jCute, Java PathFinder

29

Summary

Symbolic execution is a bug finding technique based on automated

theorem proving:

Evaluates the program on symbolic inputs, and a solver finds

concrete values for those inputs that lead to errors.

Many success stories in the open-source community and industry.

30

Demo

31

32

Angr Example

33

https://github.com/cmsc433/Fall2024_public/tree/ma

in/code/symbolic

Generate Tests to Cover All Branches

34

f2(a,b,c){

 x = 1

 y = 0

 if a != 0 :

 y = x + 3

 if b == y :

 if c == a :

 x = 4 * b

 else:

 x = 8 * (a + b)

 else:

 if c == (4 + a) :

 x = 4 * b

 else:

 x = 2 * (a + b)

 else:

 y = x + 10

 if b == y :

 x = 3 * (a + b)

 else:

 if c == x :

 x = 4 * (a + b)

 else:

 x = 4 * a

 return x;

}

Generate Tests to Cover All Branches

35

f2(a,b,c){

 x = 1

 y = 0

 if a != 0 :

 y = x + 3

 if b == y :

 if c == a :

 x = 4 * b

 else:

 x = 8 * (a + b)

 else:

 if c == (4 + a) :

 x = 4 * b

 else:

 x = 2 * (a + b)

 else:

 y = x + 10

 if b == y :

 x = 3 * (a + b)

 else:

 if c == x :

 x = 4 * (a + b)

 else:

 x = 4 * a

 return x;

}

Symbolic execution path conditions:

a == 0,b == (1 + 10)

a != 0,b == (1 + 3)

a == 0,b != (1 + 10),c != 1

a == 0,b != (1 + 10),c == 1

a != 0,b != (1 + 3),c != a

a != 0,b != (1 + 3),c == a

	Slide 1: CMSC 433 Programming Language Technologies and Paradigms
	Slide 2: The Spectrum of Program Validation Tools
	Slide 3: Introduction
	Slide 4: Testing is not Enough
	Slide 5: Symbolic Execution
	Slide 6: A Brief history of Symbolic Execution
	Slide 7: Symbolic Execution Example
	Slide 8: Symbolic Execution Example
	Slide 9: Symbolic Execution Example
	Slide 10: Symbolic Execution Example
	Slide 11: Symbolic Execution Example
	Slide 12: Symbolic Execution Example
	Slide 13: Symbolic Execution Example
	Slide 14: Symbolic Execution Example
	Slide 15: Symbolic Execution Example
	Slide 16: Symbolic Execution Example
	Slide 17: Symbolic Execution Example
	Slide 18: Symbolic Execution Example
	Slide 19: Symbolic Execution Example
	Slide 20: Symbolic Execution Example
	Slide 21: Insights
	Slide 22: Insights
	Slide 23: Practical Issues
	Slide 24: Loops and Recursion
	Slide 25: Path Explosion
	Slide 26: Heap modeling
	Slide 27: Solver limitations
	Slide 28: Environment modeling
	Slide 29: Recent Success
	Slide 30: Summary
	Slide 31: Demo
	Slide 32
	Slide 33: Angr Example
	Slide 34: Generate Tests to Cover All Branches
	Slide 35: Generate Tests to Cover All Branches

