
Data Races & Race Conditions

A data race occurs when two concurrent threads access a

shared variable

• at least one access is a write and

• the threads use no explicit mechanism to prevent the accesses

from being simultaneous

A race condition occurs when a program’s correctness

unexpectedly depends on the ordering of events

1CMSC433 Fall 2021

Race Condition

If you run a program with a race condition, will you always

get an unexpected result?

• No! It depends on the scheduler

• ...i.e., which JVM you’re running

• ...and on the other threads/processes/etc that are running on the

same CPU

Schedule-driven problems are hard to reproduce

2CMSC433 Fall 2021

Atomicity

• One way to prevent undesirable schedules is to ensure
that the code in the two threads is atomic

• Operations A and B are atomic with respect to each other if,
from the perspective of the thread executing A, when another
thread executes B, either all of B has executed or none of it has.

• An atomic operation is one that is atomic with respect to all
operations, including itself, that operate on the same state.

3CMSC433 Fall 2021

Locks

Commonly used to enforce atomicity
• Descends from semaphore construct in OS research & design

Only one thread can hold a lock
• Other threads block until they can acquire it

• The operation of acquiring a lock is atomic
➢ Cannot have a race on lock operations themselves!

In Java every Object has (can act as) a lock
• Called an intrinsic lock

4CMSC433 Fall 2021

Synchronized Statement

synchronized (obj) { statements }

• Acquires (locks) the obj intrinsic lock before executing

statements in block

• Releases (unlocks) the lock when the statement block completes,

whether due to a break, return, exception, etc.

5CMSC433 Fall 2021

More on Locks

Intrinsic locks are reentrant
• The thread can reacquire the same lock many times

• Lock is released when object unlocked the corresponding
number of times

No way to attempt to acquire an intrinsic lock
• Either succeeds, or blocks the thread

• Java 1.5 java.util.concurrent.locks package added separate locks
with more operations (will discuss these later in the semester)

6CMSC433 Fall 2021

Reentrant Locking

Consider following code used to do atomic updating of a

bounded counter
public synchronized boolean isMaxed() {

 return (value == upperBound);

}

public synchronized void inc () {

 if (!isMaxed()) ++inc;

}

• Without reentrant locking, every call to inc() would block

forever!

7CMSC433 Fall 2021

Synchronization Style

Internal sync. (class is thread-safe)
• Have a stateful object synchronize itself (e.g., with synchronized

methods). Robust to threaded callers

• E.g., class Math.Random

External sync. (class is thread-compatible)
• Have callers perform synchronization before calling the object

• If they don’t, behavior may be unpredictable

8CMSC433 Fall 2021

Quiz 5
public class Set extends Thread {
 static List lst = new ArrayList();
 String s;
 void add(String s) {
 synchronized (lst) { lst.add(s); }}

 boolean check(String s) {
 synchronized (lst) {
 return lst.contains(s);
 }
 }
 public void run() {
 if (!check(s)) add(s);
 }
 public void main(String args[]) {
 Worker thread1 = new Worker(“hello”);
 Worker thread2 = new Worker(“hello”);
 Worker thread3 = new Worker(“goodbye”);
 thread1.start();
 thread2.start();
 thread3.start();
 }
}

9

Is it possible to have
lst ={ “hello”, “goodbye”,

“hello”}

A. Yes B. No

CMSC433 Fall 2021

Answer: Yes

There are no data races
• All accesses are synchronized

There is a race condition
• Race condition caused by a violation of atomicity.

• We expect the output to be { “hello”, “goodbye” }

• But in fact it could also be { “hello”, “hello”, “goodbye” }

10CMSC433 Fall 2021

Compound Actions

This is an example of a compound action

• A sequence of operations that need to be atomic

Common examples

• Read-modify-write

• Check-then-act

11CMSC433 Fall 2021

Thread-Compatible class fixed
public class Worker extends Thread {
 static List lst = new ArrayList();
 String s;
 public void run() {
 synchronized (lst) {
 if (!lst.contains(s))
 lst.add(s);
 }
 }

 public void main(String args[]) {
 Worker thread1 = new Worekr (“hello”);
 Worker thread2 = new Worker(“hello”);
 Worker thread3 = new Worker(“goodbye”);
 thread1.start();
 thread2.start();
 thread3.start();
 }
}

Both contains() and

add() are now

guarded by a single

synchronized block,

making them atomic

12CMSC433 Fall 2021

Aspects of Synchronization

Ordering

• Ensuring that you aren’t surprised by the order in which

statements are executed

13

T1:
x = 5;
y = 6;

T2:
x = 0;
if (y == 6)
System.out.println(x);

output: 0

CMSC433 Fall 2024

What Will This Program Print?

public class NoVisibility{
 private static boolean ready;
 private static int number;
 private static class ReaderThread extends Thread {
 public void run() {
 while (!ready){
 Thread.yield();
 }
 System.out.println(number);
 }
 }
 public static void main(String[] args) {
 new ReaderThread().start();
 number = 42;
 ready = true;
 }
}

Possible output

a) 42

b) 0

c) Runs forever

14CMSC433 Fall 2024

Non-atomic 64-bit Operations

Java Language Specification (JSL-17.7)

For the purposes of the Java programming language memory model, a single

write to a non-volatile long or double value is treated as two separate writes:

one to each 32-bit half. This can result in a situation where a thread sees the

first 32 bits of a 64-bit value from one write, and the second 32 bits from

another write.

32 bit 32 bit

F F F F F F F F 0 0 0 0 0 0 0 0
Long integer 64 bit

For safe reads, writes of these variables, need

synchronization
15CMSC433 Fall 2024

When Are Actions Visible?

Must be the same lock

16CMSC433 Fall 2024

Forcing Visibility of Actions

All writes from thread that holds lock M are visible to next

thread that acquires lock M

• Must be the same lock

When accesses are unsynchronized you get no

guarantees

One effect of synchronization is to enforce visibility

17CMSC433 Fall 2024

Locking and Visibility
Thread A

y = 1

lock M

x = 1

unlock M

lock M

i = x

unlock M

j = y

Thread B

Everything before

unlock M …

… is visible to

everything after

lock M

18CMSC433 Fall 2024

Happens-Before

"Happens before" is a partial order describing program

events, invented by Leslie Lamport.

Let A and B represent operations performed by a

multithreaded process. If A happens-before B, then the

memory effects of A effectively become visible to the

thread performing B before B is performed.

19CMSC433 Fall 2024

Rules for Happens-Before

Program order rule:

• Each action in a thread happens-before every action in that thread that

comes later in the program order.

The program order rule guarantees that, within individual threads,

reordering optimizations introduced by the compiler cannot produce

different results from what would have happened if the program had

been executed in sequentially.

20

x = 1;
y = 2
z = x + y

Happens-Before

CMSC433 Fall 2024

Rules for Happens-Before

Monitor lock rule:

• An unlock on a monitor lock happens before every subsequent lock on

that same monitor lock.

21

Thread A

Happens-Before

Lock M1
 x = 100;
…

Unlock M1

Lock M1
 y = x;
…

Unlock M1

Thread B

100 is visible

CMSC433 Fall 2024

Rules for Happens-Before

Volatile variable rule:

• A write to a volatile field happens before every subsequent read of that

same field.

22

volatile boolean ready = false;
void update(){
 data = 100;
 count++;
 ready = true;
}

void consume(){
 while(!ready){
 //busy wait
 }
 send(data);
 count--;
 ready = false;
}

Thread A
Thread B

Data and count are visible to Thread B.

flushes to memory

CMSC433 Fall 2024

Rules for Happens-Before

Thread start rule:

• A call to Thread.start() on a thread happens before every action in the

started thread.

23

Thread A

Happens-Before

Thread t1 = new Thread()
 x = 100;
 …
 t1.start()

public void run(){
 y = x;
 …

}

Thread t1

100 is visible

CMSC433 Fall 2024

Rules for Happens-Before

Thread termination rule:

• Any action in a thread happens before another thread detects that thread

has terminated, either by successfully return from Thread.join() or by

Thread.isAlive returning false.

24

Thread A

Happens-Before

Thread t1 = new Thread()
t1.start();
…

t1.join();
y=x

public void run(){
 x = 100;
 …

}

Thread t1

100 is visible
CMSC433 Fall 2024

Rules for Happens-Before

Interruption rule:

• A thread calling interrupt on another thread happens-before the interrupted

thread detects the interrupt (either by having InterruptedException thrown,

or invoking isInterrupted or interrupted).

25

Happens-Before

Thread t1 = new Thread()
t1.start();
x = 100;
 …
t1.interrupt();

Thread t1
public void run() {
 try {
 ...
 } catch (InterruptedException e) {
 y = x;
 }
 }
}

100 is visible
CMSC433 Fall 2024

Rules for Happens-Before

Finalizer rule:

• The end of a constructor for an object happens-before the start of the

finalizer for that object.

26

public Frame(){
 data = 100;
 count++;
 ready = true;
}

public void finalize() {
 cleanup(data);
}

Thread A

Thread B

Happens-Before

CMSC433 Fall 2024

Rules for Happens-Before

Transitivity:

• If A happens-before B, and B happens-before C, then A happens-before C.

27

A < B and B < C ➔ A < C

CMSC433 Fall 2024

Example

• R1 == write(T1,x,1); read(T2,x,0); write(T2,y,0); write(T1,y,2)

• read(T2,x,0) does not happen-before write(T1,x,1)

• Both x==1 and x==0 are visible

Initially x == 0

Thread 1: Thread 2:

x = 1 y = x;

y = 2;

28

① ②
③④

CMSC433 Fall 2024

Example

So y can end up being {0,1,2}

R1 == write(T1,x,1); read(T2,x,0); write(T2,y,0); write(T1,y,2)

R2 == write(T1,x,1); read(T2,x,1); write(T2,y,1); write(T1,y,2)

R3 == read(T2,x,0); write(T1,x,1); write(T2,y,0); write(T1,y,2)

R4 == write(T1,x,1); read(T2,x,1); write(T1,y,2); write(T2,y,1)

R5 == read(T2,x,0); write(T1,x,1); write(T1,y,2); write(T2,y,0)

29CMSC433 Fall 2024

Data Races

The happens-before relation allows us to formally define

data races

A data race takes place when there are two events in

trace R that

• access the same memory location

• at least one is a write

• they are unordered according to happens-before

30CMSC433 Fall 2024

Data Race

• R1 == write(T1,x,1); read(T2,x,0); write(T2,y,0); write(T1,y,2)

• Happens-before

• write(T1,x,1) <: write(T1,y,2) and read(T2,x,0) <: write(T2,y,0)

• Data races between

• write(T1,x,1) and read(T2,x,0)

• write(T1,y,2) and write(T2,y,0)

31

Initially x = 0

Thread 1:
x = 1;
y = 2;

Thread 2:

y = x;

CMSC433 Fall 2024

Using Volatile

A one-writer/many-reader value

• Simple control flags:

➢ volatile boolean done = false;

Keeping track of a “recent value” of something

32CMSC433 Fall 2024

Limitations

Incrementing a volatile field is not atomic
• In general, writes to a volatile field that depend on the previous

value of that field don’t work

A volatile reference to an object isn’t the same as having
the fields of that object be volatile

• No way to make elements of an array volatile

Can’t keep two volatile fields in sync

33CMSC433 Fall 2024

Example

class Test {

 static int i = 0, j = 0;

 static void one() { i++; j++; }

 static void two() {System.out.print("i=" + i + " j=" + j);}

}

Thread A calls Test.one() repeatedly

Thread B calls Test.two() repeatedly

Can the printed value of j ever be greater than that of i?

• Yes. This is completely unsynchronized.

34CMSC433 Fall 2024

Example

class Test {

 static int i = 0, j = 0;

 static synchronized void one() { i++; j++; }

 static synchronized void two() {

 System.out.println("i=" + i + " j=" + j);

 }

}

How about now?

• No. i and j are updated and read in apparent textual order

35CMSC433 Fall 2024

Example

class Test {

 static volatile int i = 0, j = 0;

 static void one() { i++; j++; }

 static void two(){

 System.out.print("i=" + i + " j=" + j);

 }

}

How about now?

36CMSC433 Fall 2024

Example

class Test {

 static volatile int i = 0, j = 0;

 static void one() { i++; j++; }

 static void two(){

 System.out.print("i=" + i + " j=" + j);

 }

}

How about now?

• j always >= i-1, but could be a lot bigger

• e.g., one() could be called many times between the time two() access the

value of i and then accesses the value of j.

37

①

②

③③③

④

CMSC433 Fall 2024

Quiz Time

Can this result in i=0 and j=0?

38CMSC433 Fall 2024

Doesn’t Seem Possible...

But this can happen!

39

①

②

③ ④

⑤

⑥

CMSC433 Fall 2024

How Can This Happen?

Compiler can reorder statements

• Or keep values in registers

Processor can reorder them

On multi-processor systems, values not synchronized in

global memory

40CMSC433 Fall 2024

Synchronization: Deadlocks

41

Synchronization not a Panacea

Two threads can block on locks held by the other; this is

called deadlock

• A set of threads is deadlocked if each thread is waiting for an

event that only another thread in the set (including itself) can

cause.

42

Synchronization not a Panacea

Two threads can block on locks held by the other; this is

called deadlock.

T1.run() {

 synchronized (A) {

 …

 synchronized (B) {

 …

 }

 }

}

T2.run() {

 synchronized (B) {

 …

 synchronized (A) {

 …

 }

 }

}
43

Object A = new Object();

Object B = new Object();

Synchronization not a Panacea

Two threads can block on locks held by the other; this is

called deadlock.

T1.run() {

 synchronized (A) {

 …

 synchronized (B) {

 …

 }

 }

}

T2.run() {

 synchronized (B) {

 …

 synchronized (A) {

 …

 }

 }

}
44

Object A = new Object();

Object B = new Object();

Context

switch

Deadlock

Easy to write code that deadlocks
• Thread 1 holds lock on A

• Thread 2 holds lock on B

• Thread 1 is blocked trying to acquire lock on B

• Thread 2 is blocked trying to acquire lock on A

• Deadlock!

Not easy to detect when deadlock has occurred
• Other than by the fact that nothing is happening

45

Solution

A program will be free of lock-ordering deadlocks

• if all threads acquire the locks they need in a fixed global order.

➢ For example:

• Always acquire left lock before right lock

• Requires a global analysis of your program’s locking behavior

• If all threads lock all the required resource at once

➢ All required resources are available

➢ Not efficient, difficult to get all the resources

46

Example

47

public static void transferMoney(
 Account fromAcc, Account toAcc, int amount){
 synchronized (fromAcc) {
 synchronized (toAcc) {
 fromAcc.debit(amount);
 toAcc.credit(amount);
 }
 }
}

A: TransferMoney(checking, saving, 10);

B: TransferMoney(saving, checking, 20);

No control over the lock order. Depends on the caller

Possible Solution

48

int fromHash = System.identityHashCode(fromAcct);
 int toHash = System.identityHashCode(toAcct);
 if (fromHash < toHash) {
 synchronized (fromAcct) {
 synchronized (toAcct) {
 new Helper().transfer();
 }
 }
}else if (fromHash > toHash) {
 synchronized (toAcct) {
 synchronized (fromAcct) {
 new Helper().transfer();
 }
 }
} else {
 synchronized (tieLock) {
 synchronized (fromAcct) {
 synchronized (toAcct) {…
}

tieLock

from to

The Deadlock problem

There is a Kansas law still in existence which reads:

When two trains approach each other at a crossing, they

shall both come to a full stop and neither shall start up until

the other has gone.

49

Open Calls

Calling a method with no locks held is called open call.

Classes rely on open calls are more well-behaved than

classes that make calls with locks held.

Use synchronized when it is necessary.

• To achieve atomicity

50

Dining Philosopher’s Problem

Philosophers eat/think

Eating needs two forks

Pick one fork at a time

Formulated in 1965 by Dijkstra to capture the

concept of multiple processes

competing for limited resources

51

Rules of the Game

The philosophers are very logical

• They want to settle on a shared policy that all can apply

concurrently

• They are hungry: the policy should let everyone eat (eventually)

• They are utterly dedicated to the proposition of equality: the

policy should be totally fair

52

What can go wrong?

Primarily, we worry about:

• Deadlock: A policy that leaves all the philosophers “stuck”, so

that nobody can do anything at all

• Starvation: A policy that can leave some philosopher hungry in

some situation (even one where the others collaborate)

• Livelock: A policy that makes them all do something endlessly

without ever eating!

53

Solution 1

What is your solution?

54

Solution 1

Learn to eat with one fork (sanitary solution)

55

Solution 1

Learn to eat with one fork (sanitary solution)

Buy more forks

A philosopher can eat only if the neighbors are not eating

Solutions are less interesting than the problem itself!

56

Solution 2 (flawed)

while(true) {
 think();
 take_fork(i); //left
 take_fork((i+1)%5); //right
 eat();
 put_fork(i);
 put_fork((i+1)% 5);
}

57

Each Philosopher:

Solution in Java (flawed)

58

Philosopher[] philosophers=new Philosopher[5];

Object[]forks=new Object[5];

for(inti= 0; i < forks.length; i++) {

 forks[i] =newObject();

}

for(inti= 0; i < 5; i++) {

 Object lFork= forks[i];

 Object rFork= forks[(i + 1) % 5];

 philosophers[i] =new Philosopher(lFork, rFork);

 Thread t = new

 Thread(philosophers[i],"Philosopher "+(i+ 1));

 t.start();

}

Flawed solution?

Oops! Subject to deadlock if they

all pick up their “right” fork

simultaneously!

59

while(true) {
 think();
 take_fork(i);
 //all wait

 take_fork((i+1)%5);
 eat();
 put_fork(i);
 put_fork((i+1)% 5);
}

Solution 3

Allow only 4 philosophers to sit simultaneously

Asymmetric solution

• Odd philosopher picks left fork followed by right

• Even philosopher does vice versa

Pass a token

Allow philosopher to pick fork only if both available

60

Deadlock Conditions

For deadlock to occur the following conditions must
hold simultaneously

1. Mutual exclusion: a non-sharable resource exists

2. Hold and wait: processes already holding resources
may request new resources held by other processes

3. No preemption: No resource can be forcibly removed
from a process holding it

4. Circular wait: two or more processes form a circular
chain where each process waits for a resource that the
next process in the chain holds

61

Deadlock: Wait graphs

A T1 Thread T1 holds lock A

BT2
Thread T2 attempting to

acquire lock B

Deadlock occurs when there is a cycle in the graph

62

Wait graph example

A T1

BT2

T1 holds lock on A

T2 holds lock on B

T1 is trying to acquire a lock on B

T2 is trying to acquire a lock on A

63

Wait graph example

A T1

BT2

64

Key Ideas

Multiple threads can run simultaneously
• Either truly in parallel on a multiprocessor

• Or effectively in parallel on a single processor
➢ Assuming a running thread can be preempted at any time

Threads can share data
• Need to prevent interference

➢ Synchronization, immutability, and other methods

• Overuse use of synchronization can create deadlock
➢ Violation of liveness

65

Cyclic wait

For example… consider a deadlock

• Each philosopher is holding one fork

• … and each is waiting for a neighbor to release one fork

We can represent this as a graph in which

• Nodes represent philosophers

• Edges represent waiting-for

66

Cyclic wait

We can define a system to be in a deadlock state if

• There exists ANY group of processes, such that

• Each process in the group is waiting for some other process

• And the wait-for graph has a cycle

Doesn’t require that every process be stuck… even two is

enough to say that the system as a whole contains a

deadlock (“is deadlocked”)

67

Real World Deadlocks?

• Gridlock

68

Avoiding the Deadlock

69

Never acquire more than one lock

• Not always practical

Ordering the locks

Open calls

Diagnosing the Deadlock

70

Timed Lock

• trylock

• When a timed lock attempt fails, releases all locks and

wait again

Database

• When cycle detected, arbitrarily kills a transaction

Java does not detect the deadlock

Thread dumps: debugging

Starvation

71

Philosopher can go hungry in some situation even though

they collaborate

Starvation

72

Avoid the temptation to use thread priorities.

They are platform dependent

Livelock

Philosophers may have to think endlessly without ever
eating!

The issue is that processes may be active and yet are
“actually” waiting for one-another in some sense

Need to talk about whether or no processes make
progress

Once we do this, starvation can also be formalized

73

Livelock Example

74

while(counter.get()<10) {
 counter.inc();
}

while(counter.get()>0) {
 counter.dec();
}

int couner = 5

T1:

T2:

Livelock

Carrier-sense multiple access with collision

detection(CSMA/CD)

Two polite friends

75

Publishing and Escape

Publishing an object: making it available to parts of a

program outside the scope in which it was created

• Sometimes you want to

• Other times you don’t

Object escape: unintended (or poorly considered)

publishing

• Source of many subtle errors

• Problems can be especially tricky in presence of threads

76

Perils of Publishing (1/2)

public class BadLine {

 //@Invariant: p1 and p2 must be different points

 private MutablePoint p1;

 private MutablePoint p2;

 // BadLine throws exception if points overlap

 BadLine(MutablePoint p1, MutablePoint p2) throws IllegalArgumentException{

 … error checking … }

 …

 MutablePoint getP1() { return p1; }

 MutablePoint getP2() { return p2; }

 …

}

public class MutablePoint {
 private double x;
 private double y;
 …
 public void setX(double newX) { x = newX; }
 public void setY(double newY) { y = newY; }
}

Here is the MutablePoint class

Consider slight modification to Line class

77

Obvious Forms of Publishing

Assigning to a public field
• Consider
public class ReallyBadLine {

 public MutablePoint p1;

 …

}

• Really bad idea: don’t do this (almost impossible to enforce
correctness)

Via getters (cf. BadLine)
• Using getters is better than using public fields

• Remember that once an inner object is obtained by alien code,
an enclosing object loses control

78

Indirect Publishing (1/2)

Publishing an object also publishes any objects accessible
from that object

Consider (from book)
class UnsafeStates {
 private String[] states = new String[] {“AK”, “AL”, …};

 public String[] getStates() {
 return states;
 }
}

• getStates() publishes private field states, which can now be
modified (probably not what is intended)

• It also publishes all the String objects in the states array as well

Indirect publishing is the most common form of escape!

79

Indirect Publishing (2/2)

Nested classes can give rise to a subtle form of indirect

publishing

• Inner objects have a reference to outer, enclosing objects

• This is stored in a hidden field this$0

• There are means to access this$0

• So: publishing an inner object indirectly publishes its enclosing

object also

80

Outer / Inner Object Example

Consider class Outer
public class Outer {
 private int a = 1;
 public void foo() {
 System.out.println ("Outer a = " + a);
 }
 public class Inner {
 private int b = a + 1;
 public void foo() {
 System.out.println ("Inner b = " + b);
 }
 }
}

81

Outer / Inner Object Example

Now consider (credit to: http://stackoverflow.com/questions/763543/in-java-
how-do-i-access-the-outer-class-when-im-not-in-the-inner-class)
import java.lang.reflect.Field;
public class OuterInnerTest {
 public static void main(String[] args) {
 Outer.Inner v = new Outer().new Inner();
 v.foo ();
 Field outerThis = v.getClass().getDeclaredField("this$0");
 Outer u = (Outer)outerThis.get(v);
 u.foo();
 }
}

What gets printed?
inner b = 2

Outer a = 1

• Outer object is available, even though it is not directly published

82

Multi-Threading and Escape

Escape is especially problematic in the presence of

threads

• The usual issues of thread-safety are especially evident when an

object escapes

• There is also an issue with incompletely constructed objects

being visible to other threads!

Examples follow

83

Morals

Object is only fully constructed when constructor

terminates

Don’t let this escape during object construction!

• Don’t do it!

• Book: object is improperly constructed when this is the case

Related point

• Don’t start threads inside constructors

• Reason: very easy to publish this to such threads

84

Overhead of Sharing Objects

Sharing objects among threads imposes costs

• Thread-safety must be implemented explicitly

• This involves locking

• Locking incurs run-time overhead, programming complexity

85

Thread Confinement

One way to minimize complexity: don’t share!

• Of course, some sharing is needed

• However, objects that are confined to a single thread are

guaranteed to be thread-safe

• Many graphical-user-interface (GUI) follow this paradigm

➢ There is a single thread handling events

➢ Applications put events into event queue

➢ Handler repeatedly checks event queue, calls appropriate handler

➢ Objects that only reside in handler need not be synchronized

86

Stack Confinement

Local variables belong to a single thread, by definition

• Local variables live on the stack

• In Java, only the heap is shared

Objects will be stack confined if they are:

• Created in a thread

• Assigned to a local variable in the thread

• Never published

87

ThreadLocal

Another mechanism for localizing objects in threads so

that thread-safety is guaranteed

• A ThreadLocal object can be seen as a container for other

objects, e.g.

➢ ThreadLocal<List<Long>> idList;

➢ idList is a ThreadLocal object containing several List<Long>

objects

• Each thread accessing a ThreadLocal object is given its own

variable pointing to a contained object

E.g. any thread accessing idList is given its own local List<Long> variable

by idList

88

ThreadLocal API

Key methods for ThreadLocal<T>
• public T get()

Get instance of T associated with thread executing get()

• public void set(T e)

Change thread’s instance of T to e

• protected T initialValue()

Define initial value associated with a thread (called when get() invoked first
time, provided set() not called previously)

• public void remove()

Remove object associated with thread

How to define initialValue()? Usually via
anonymous inner classes

89

Immutability

Synchronization incurs overhead

• Locking reduces performance

• Ensuring thread-safety makes code more complex

How to reduce overhead?

• Don’t share objects among threads if you don’t have to

• Use immutable objects whenever you can!

90

Immutable Objects

Why do we need synchronization? To cope with changes
to object state
• If fields in a method are modified while a method executes, the

invariants in the class spec might be temporarily invalidated

• Without synchronization these invalid values are visible to
threads with access to the object

If object’s don’t change, then there is no need to
synchronize!
• If invariant holds when object is created, then they are

guaranteed to remain true

• Immutable objects have this property: once they are created,
their state never changes

91

Mutability and Visibility

Final fields change values once!

• When a constructor is first called, fields are allocated and given

default values

• As the constructor executes, new values are computed and

assigned to fields

If a constructor publishes this, then another thread might

see the value of a final field before it has been assigned

to.

92

Immutability Redefined

An object is immutable if

• All its fields are final

• Its state never changes after construction

• It is properly constructed: this does not escape during

construction

If an object is immutable, then:

• it is thread-safe

• it may be safely accessed / published without synchronization!

93

Immutability and Visibility

What guarantees visibility of assignments to final fields in

immutable objects?

Answer: the Java Memory Model

• If an object’s fields are all final …

• … then the JMM says that all writes to these fields are

immediately visible, as are all memory writes that happen before

it

• This is like behavior of volatile variables!

This property is called initialization safety

94

Guarded suspension

Guarded suspension is a software design pattern for

managing operations that require both a lock to be

acquired and a precondition to be satisfied before the

operation can be executed.

95

void stateDependentMethod(){
 synchronized(lock){
 while(!conditionPredicate())
 lock.wait();
 //now in a desired state
 }
}

Guarded Suspension

For bounded buffers in a multithreaded environment:

• If the buffer is empty, a take() operation cannot complete

• Another thread could deposit an element later, and a take()

could succeed!

96

Guarded Suspension

In guarded-suspension approaches to state-dependent

actions, threads “go to sleep” until the actions they want to

perform are possible

Needed mechanisms

• … for going to sleep (“suspend”)

• … for waking up (“resume”)

97

Busy-Waiting

An old-fashioned mechanism for suspend/resume

• Use a while loop to test for enabled-ness of state-dependent

action

• When true: exit loop, perform action

• E.g.

while (!enabled) ; // Suspend via spinning

// Resume

Considerations

• Consumes computing resources

• Enabled-ness condition might become false after loop

terminates, so synchronization should be used

98

wait() / notify() / notifyAll()

A more modern mechanism in Java for suspending /

resuming

• To suspend, a thread performs a wait()

• Other threads perform notify() / notifyAll() to enable

resumption of suspended threads

99

wait() / notify() / notifyAll()

Benefits

• No consumption of cycles while suspended

• Synchronization taken care of (we will see how in a moment)

Dangers

• A suspended thread is dependent on other threads to wake it up

• If no other thread performs notify() / notifyAll(), then

thread sleeps forever

100

Example: BoundedBufferWait

// Pre: number of elements is below maxSize

 // Post: elt is added to end of elements, waiting threads notified

 // Exception: If number of elements is too high, suspend.

 public synchronized void put (Object elt) throws

 InterruptedException {

 while (elements.size() == maxSize) wait();

 elements.add(elt);

 notifyAll();

 }

In put() / take() operations, wait() executed when

state does not allow action

When an operation succeeds, waiting threads notified

101

Example: BoundedBufferWait

When a thread wakes up, it must check that condition it was waiting
for holds!
• This is why loop is used with wait() inside. You should do this always

unless you have an ironclad argument for not needing a loop!

• Just because a thread is resumed does not mean it is safe to proceed

When a thread modifies the state of the object (e.g. by successfully
adding an element) it must notify sleeping threads

InterruptedException?
• wait() is a blocking operation, meaning it could never terminate

• Any thread can be interrupted (a topic for a later date) by another thread

• This exception is raised in this case, because a blocked thread may need
some cleanup

102

notify() / notifyAll()

Consider take() operation in BoundedBufferWait
public synchronized Object take() throws InterruptedException {
 while (elements.size() == 0) wait();
 Object elt = elements.get(0);
 elements.remove(0);
 notifyAll();
 return elt;
}

Doesn’t this introduce a race condition?
• notifyAll() called before return of element

• Could this cause problems?

Answer: no
• notify() / notifyAll() do not release locks

• So lock on buffer only released when take() operation terminates

103

Why notifyAll()?

put() / take() use notifyAll() rather than

notify()

• It seems wasteful to wake everyone up!

• Why not just wake up one thread?

There is a reason!

• Waiting threads are potentially concerned with different

conditions

➢ Putters are waiting for buffer not to be full

➢ Takers are waiting for buffer not to be empty

• If you use notify(), you only wake up one thread

• If you wake up the wrong thread, you can wind up in a deadlock!

104

Producer-Consumer Simulation

105

void take(){
 synchronized(buffer){
 while(buffer.empty) {
 buffer.wait();
 }
 buffer.full = false;
 buffer.notify();
 }
}

void put(){
 synchronized(buffer){
 while(buffer.full) {
 buffer.wait();
 }
 buffer.full = true;
 buffer.notify();
 }
}

Consumer Producer

Buffer

Producer-Consumer Simulation

106

void take(){
 print ”A”
 synchronized(buffer){
 while(buffer.empty) {
 print “B”
 buffer.wait();
 Print “C”
 }
 buffer.full = false;
 buffer.notify();
 }
}

Consumer:
Buffer buffer = new Buffer();
Thread c1 = new Consumer("Consumer 1",buffer);
Thread c2 = new Consumer("Consumer 2",buffer);
c1.start();
c2.start();

Main:

Buffer

Output:

c1.A

c2.A

Producer-Consumer Simulation

107

void take(){
 print ”A”
 synchronized(buffer){
 while(buffer.empty) {
 print “B”
 buffer.wait();
 Print “C”
 }
 buffer.full = false;
 buffer.notify();
 }
}

Consumer:
Buffer buffer = new Buffer();
Thread c1 = new Consumer("Consumer 1",buffer);
Thread c2 = new Consumer("Consumer 2",buffer);
c1.start();
c2.start();

Main:

Buffer

Output:

c1.A

c2.A

Producer-Consumer Simulation

108

void take(){
 print ”A”
 synchronized(buffer){
 while(buffer.empty) {
 print “B”
 buffer.wait();
 Print “C”
 }
 buffer.full = false;
 buffer.notify();
 }
}

Consumer:
Buffer buffer = new Buffer();
Thread c1 = new Consumer("Consumer 1",buffer);
Thread c2 = new Consumer("Consumer 2",buffer);
c1.start();
c2.start();

Main:

Buffer

Output:

c1.A

c2.A

Blocked

Producer-Consumer Simulation

109

void take(){
 print ”A”
 synchronized(buffer){
 while(buffer.empty) {
 print “B”
 buffer.wait();
 Print “C”
 }
 buffer.full = false;
 buffer.notify();
 }
}

Consumer:
Buffer buffer = new Buffer();
Thread c1 = new Consumer("Consumer 1",buffer);
Thread c2 = new Consumer("Consumer 2",buffer);
c1.start();
c2.start();

Main:

Buffer

Output:

c1.A

c2.A

c1.B

Blocked

Buffer empty. suspended

Producer-Consumer Simulation

110

void take(){
 print ”A”
 synchronized(buffer){
 while(buffer.empty) {
 print “B”
 buffer.wait();
 Print “C”
 }
 buffer.full = false;
 buffer.notify();
 }
}

Consumer:
Buffer buffer = new Buffer();
Thread c1 = new Consumer("Consumer 1",buffer);
Thread c2 = new Consumer("Consumer 2",buffer);
c1.start();
c2.start();

Main:

Buffer

Output:

c1.A

c2.A

c1.B

Wait Set

Producer-Consumer Simulation

111

void take(){
 print ”A”
 synchronized(buffer){
 while(buffer.empty) {
 print “B”
 buffer.wait();
 Print “C”
 }
 buffer.full = false;
 buffer.notify();
 }
}

Consumer:
Buffer buffer = new Buffer();
Thread c1 = new Consumer("Consumer 1",buffer);
Thread c2 = new Consumer("Consumer 2",buffer);
c1.start();
c2.start();

Main:

Buffer

Output:

c1.A

c2.A

c1.B

Wait Set

Producer-Consumer Simulation

112

void take(){
 print ”A”
 synchronized(buffer){
 while(buffer.empty) {
 print “B”
 buffer.wait();
 print “C”
 }
 buffer.full = false;
 buffer.notify();
 }
}

Consumer:
Buffer buffer = new Buffer();
Thread c1 = new Consumer("Consumer 1",buffer);
Thread c2 = new Consumer("Consumer 2",buffer);
c1.start();
c2.start();

Main:

Buffer

Output:

c1.A
c2.A
c1.B

c2.B

Wait Set

Buffer empty. suspended

Producer-Consumer Simulation

113

void take(){
 print ”A”
 synchronized(buffer){
 while(buffer.empty) {
 print “B”
 buffer.wait();
 print “C”
 }
 buffer.full = false;
 buffer.notify();
 }
}

Consumer:
Buffer buffer = new Buffer();
Thread c1 = new Consumer("Consumer 1",buffer);
Thread c2 = new Consumer("Consumer 2",buffer);
c1.start();
c2.start();

Main:

Buffer

Output:

c1.A
c2.A
c1.B

c2.B

Wait Set

Producer-Consumer Simulation

114

void take(){
 print ”A”
 synchronized(buffer){
 while(buffer.empty) {
 print “B”
 buffer.wait();
 print “C”
 }
 buffer.full = false;
 buffer.notify();
 }
}

Consumer:
Buffer buffer = new Buffer();
Thread c1 = new Consumer("Consumer 1",buffer);
Thread c2 = new Consumer("Consumer 2",buffer);
c1.start();
c2.start();

Main:

Buffer

Output:

c1.A
c2.A
c1.B

c2.B

Wait Set

Thread p1 = new Producer("Producer",buffer);
p1.start();

Producer-Consumer Simulation

115

void take(){
 print ”A”
 synchronized(buffer){
 while(buffer.empty) {
 print “B”
 buffer.wait();
 print “C”
 }
 buffer.full = false;
 buffer.notify();
 }
}

Consumer: Producer:

Buffer

Output:

c1.A
c2.A
c1.B

c2.B

Wait Set

void put(){
 synchronized(buffer){
 while(buffer.full) {
 buffer.wait();
 }
 buffer.full = true;
 buffer.notify();
 }
}

Producer-Consumer Simulation

116

void take(){
 print ”A”
 synchronized(buffer){
 while(buffer.empty) {
 print “B”
 buffer.wait();
 print “C”
 }
 buffer.full = false;
 buffer.notify();
 }
}

Consumer: Producer:

Buffer

Output:

c1.A
c2.A
c1.B

c2.B

Wait Set

void put(){
 synchronized(buffer){
 while(buffer.full) {
 buffer.wait();
 }
 buffer.full = true;
 buffer.notify();
 }
}

Producer-Consumer Simulation

117

void take(){
 print ”A”
 synchronized(buffer){
 while(buffer.empty) {
 print “B”
 buffer.wait();
 print “C”
 }
 buffer.full = false;
 buffer.notify();
 }
}

Consumer: Producer:

Buffer

Output:

c1.A
c2.A
c1.B

c2.B

Wait Set

void put(){
 synchronized(buffer){
 while(buffer.full) {
 buffer.wait();
 }
 buffer.full = true;
 buffer.notify();
 }
}

Producer-Consumer Simulation

118

void take(){
 print ”A”
 synchronized(buffer){
 while(buffer.empty) {
 print “B”
 buffer.wait();
 print “C”
 }
 buffer.full = false;
 buffer.notify();
 }
}

Consumer: Producer:

Buffer

Output:

c1.A
c2.A
c1.B

c2.B
c1.C

Wait Set

void put(){
 synchronized(buffer){
 while(buffer.full) {
 buffer.wait();
 }
 buffer.full = true;
 buffer.notify();
 }
}

Producer-Consumer Simulation

119

void take(){
 print ”A”
 synchronized(buffer){
 while(buffer.empty) {
 print “B”
 buffer.wait();
 print “C”
 }
 buffer.full = false;
 buffer.notify();
 }
}

Consumer: Producer:

Buffer

Output:

c1.A
c2.A
c1.B

c1.B
c1.C

Wait Set

void put(){
 synchronized(buffer){
 while(buffer.full) {
 buffer.wait();
 }
 buffer.full = true;
 buffer.notify();
 }
}

Producer-Consumer Simulation

120

void take(){
 print ”A”
 synchronized(buffer){
 while(buffer.empty) {
 print “B”
 buffer.wait();
 print “C”
 }
 buffer.full = false;
 buffer.notify();
 }
}

Consumer: Producer:

Buffer

Output:

c1.A
c2.A
c1.B

c1.B
c1.C

Wait Set

void put(){
 synchronized(buffer){
 while(buffer.full) {
 buffer.wait();
 }
 buffer.full = true;
 buffer.notify();
 }
}

Producer-Consumer Simulation

121

void take(){
 print ”A”
 synchronized(buffer){
 while(buffer.empty) {
 print “B”
 buffer.wait();
 print “C”
 }
 buffer.full = false;
 buffer.notify();
 }
}

Consumer: Producer:

Buffer

Output:

c1.A
c2.A
c1.B

c1.B
c1.C

c1.C
c2.C

void put(){
 synchronized(buffer){
 while(buffer.full) {
 buffer.wait();
 }
 buffer.full = true;
 buffer.notify();
 }
}

Producer-Consumer Simulation

122

void take(){
 print ”A”
 synchronized(buffer){
 while(buffer.empty) {
 print “B”
 buffer.wait();
 print “C”
 }
 buffer.full = false;
 buffer.notify();
 }
}

Consumer: Producer:

Buffer

Output:

c1.A
c2.A
c1.B

c1.B
c1.C

c2.C
c2.B

void put(){
 synchronized(buffer){
 while(buffer.full) {
 buffer.wait();
 }
 buffer.full = true;
 buffer.notify();
 }
}

Quiz 1

123

void take(){
 print ”A”
 synchronized(buffer){
 while(buffer.empty) {
 print “B”
 buffer.wait();
 print “C”
 }
 buffer.full = false;
 buffer.notify();
 }
}

Consumer:

What is the output?

A. ABC
B. AA
C. AAB

D. AABC
E. AABB

F. ABAB

Buffer buffer = new Buffer();
Thread c1 = new Consumer("Consumer 1",buffer);
Thread c2 = new Consumer("Consumer 2",buffer);
c1.start();
C1.sleep(100);
c2.start();

Main:

Quiz 1

124

void take(){
 print ”A”
 synchronized(buffer){
 while(buffer.empty) {
 print “B”
 buffer.wait();
 print “C”
 }
 buffer.full = false;
 buffer.notify();
 }
}

Consumer:

What is the output?

A. ABC
B. AA
C. AAB

D. AABC
E. AABB

F. ABAB

Buffer buffer = new Buffer();
Thread c1 = new Consumer("Consumer 1",buffer);
Thread c2 = new Consumer("Consumer 2",buffer);
c1.start();
C1.sleep(100);
c2.start();

Main:

Quiz 2

125

void take(){
 print ”A”
 synchronized(buffer){
 while(buffer.empty) {
 print “B”
 buffer.wait();
 print “C”
 }
 buffer.full = false;
 print “D”
 buffer.notify();
 }
}

Consumer:

What is the output?

A. AB
B. ABC
C. ABCBC

D. ABCD
E. ABD

Buffer buffer = new Buffer();
Thread c1 = new Consumer(buffer);
Thread p1 = new Producer(buffer);
c1.start();
sleep(1000);
p1.start();

Main:

Quiz 2

126

void take(){
 print ”A”
 synchronized(buffer){
 while(buffer.empty) {
 print “B”
 buffer.wait();
 print “C”
 }
 buffer.full = false;
 print “D”
 buffer.notify();
 }
}

Consumer:

What is the output?

A. AB
B. ABC
C. ABCBC

D. ABCD
E. ABD

Buffer buffer = new Buffer();
Thread c1 = new Consumer(buffer);
Thread p1 = new Producer(buffer);
c1.start();
sleep(1000);
p1.start();

Main:

Quiz 3

127

void take(){
 print ”A”
 synchronized(buffer){
 while(buffer.empty) {
 print “B”
 buffer.wait();
 print “C”
 }
 buffer.full = false;
 print “D”
 buffer.notify();
 }
}

Consumer:

What is the output?

A. ABCD
B. AD
C. ABCCD

D. A

Buffer buffer = new Buffer();
Thread c1 = new Consumer(buffer);
Thread p1 = new Producer(buffer);
p1.start();
sleep(1000);
c1.start();

Main:

Quiz 3

128

void take(){
 print ”A”
 synchronized(buffer){
 while(buffer.empty) {
 print “B”
 buffer.wait();
 print “C”
 }
 buffer.full = false;
 print “D”
 buffer.notify();
 }
}

Consumer:

What is the output?

A. ABCD
B. AD
C. ABCCD

D. A

Buffer buffer = new Buffer();
Thread c1 = new Consumer(buffer);
Thread p1 = new Producer(buffer);
p1.start();
sleep(1000);
c1.start();

Main:

Producer runs first.

Buffer is not empty

When To Use notify()

Only use notify() if

• Every thread in wait-set is guaranteed to be waiting on same

condition

• Condition is guaranteed to be true when thread executing
notify() surrenders its lock on object

Otherwise: use notifyAll()

129

Timed Waiting

Problem with wait(): unbounded waiting

• You do not know how long a thread might wait before being able to
continue

• In some applications this leads to unacceptable performance
variability

Variant: wait(long millis)
• Wait for at least specified # of milliseconds

• At time-out, exit wait-set

• How do you tell if exit from wait-set is due to notification or timeout?
➢ You don’t

➢ You have to check this yourself

Intermediate between balking, guarded suspension

130

	Slide 1: Data Races & Race Conditions
	Slide 2: Race Condition
	Slide 3: Atomicity
	Slide 4: Locks
	Slide 5: Synchronized Statement
	Slide 6: More on Locks
	Slide 7: Reentrant Locking
	Slide 8: Synchronization Style
	Slide 9: Quiz 5
	Slide 10: Answer: Yes
	Slide 11: Compound Actions
	Slide 12: Thread-Compatible class fixed
	Slide 13: Aspects of Synchronization
	Slide 14: What Will This Program Print?
	Slide 15: Non-atomic 64-bit Operations
	Slide 16: When Are Actions Visible?
	Slide 17: Forcing Visibility of Actions
	Slide 18: Locking and Visibility
	Slide 19: Happens-Before
	Slide 20: Rules for Happens-Before
	Slide 21: Rules for Happens-Before
	Slide 22: Rules for Happens-Before
	Slide 23: Rules for Happens-Before
	Slide 24: Rules for Happens-Before
	Slide 25: Rules for Happens-Before
	Slide 26: Rules for Happens-Before
	Slide 27: Rules for Happens-Before
	Slide 28: Example
	Slide 29: Example
	Slide 30: Data Races
	Slide 31: Data Race
	Slide 32: Using Volatile
	Slide 33: Limitations
	Slide 34: Example
	Slide 35: Example
	Slide 36: Example
	Slide 37: Example
	Slide 38: Quiz Time
	Slide 39: Doesn’t Seem Possible...
	Slide 40: How Can This Happen?
	Slide 41: Synchronization: Deadlocks
	Slide 42: Synchronization not a Panacea
	Slide 43: Synchronization not a Panacea
	Slide 44: Synchronization not a Panacea
	Slide 45: Deadlock
	Slide 46: Solution
	Slide 47: Example
	Slide 48: Possible Solution
	Slide 49: The Deadlock problem
	Slide 50: Open Calls
	Slide 51: Dining Philosopher’s Problem
	Slide 52: Rules of the Game
	Slide 53: What can go wrong?
	Slide 54: Solution 1
	Slide 55: Solution 1
	Slide 56: Solution 1
	Slide 57: Solution 2 (flawed)
	Slide 58: Solution in Java (flawed)
	Slide 59: Flawed solution?
	Slide 60: Solution 3
	Slide 61: Deadlock Conditions
	Slide 62: Deadlock: Wait graphs
	Slide 63: Wait graph example
	Slide 64: Wait graph example
	Slide 65: Key Ideas
	Slide 66: Cyclic wait
	Slide 67: Cyclic wait
	Slide 68: Real World Deadlocks?
	Slide 69: Avoiding the Deadlock
	Slide 70: Diagnosing the Deadlock
	Slide 71: Starvation
	Slide 72: Starvation
	Slide 73: Livelock
	Slide 74: Livelock Example
	Slide 75: Livelock
	Slide 76: Publishing and Escape
	Slide 77: Perils of Publishing (1/2)
	Slide 78: Obvious Forms of Publishing
	Slide 79: Indirect Publishing (1/2)
	Slide 80: Indirect Publishing (2/2)
	Slide 81: Outer / Inner Object Example
	Slide 82: Outer / Inner Object Example
	Slide 83: Multi-Threading and Escape
	Slide 84: Morals
	Slide 85: Overhead of Sharing Objects
	Slide 86: Thread Confinement
	Slide 87: Stack Confinement
	Slide 88: ThreadLocal
	Slide 89: ThreadLocal API
	Slide 90: Immutability
	Slide 91: Immutable Objects
	Slide 92: Mutability and Visibility
	Slide 93: Immutability Redefined
	Slide 94: Immutability and Visibility
	Slide 95: Guarded suspension
	Slide 96: Guarded Suspension
	Slide 97: Guarded Suspension
	Slide 98: Busy-Waiting
	Slide 99: wait() / notify() / notifyAll()
	Slide 100: wait() / notify() / notifyAll()
	Slide 101: Example: BoundedBufferWait
	Slide 102: Example: BoundedBufferWait
	Slide 103: notify() / notifyAll()
	Slide 104: Why notifyAll()?
	Slide 105: Producer-Consumer Simulation
	Slide 106: Producer-Consumer Simulation
	Slide 107: Producer-Consumer Simulation
	Slide 108: Producer-Consumer Simulation
	Slide 109: Producer-Consumer Simulation
	Slide 110: Producer-Consumer Simulation
	Slide 111: Producer-Consumer Simulation
	Slide 112: Producer-Consumer Simulation
	Slide 113: Producer-Consumer Simulation
	Slide 114: Producer-Consumer Simulation
	Slide 115: Producer-Consumer Simulation
	Slide 116: Producer-Consumer Simulation
	Slide 117: Producer-Consumer Simulation
	Slide 118: Producer-Consumer Simulation
	Slide 119: Producer-Consumer Simulation
	Slide 120: Producer-Consumer Simulation
	Slide 121: Producer-Consumer Simulation
	Slide 122: Producer-Consumer Simulation
	Slide 123: Quiz 1
	Slide 124: Quiz 1
	Slide 125: Quiz 2
	Slide 126: Quiz 2
	Slide 127: Quiz 3
	Slide 128: Quiz 3
	Slide 129: When To Use notify()
	Slide 130: Timed Waiting

