
Synchronizers

Synchronizers
• Objects that coordinate the control flow of threads based on the

synchronizer’s state
• Blocking queues act as synchronizers

➢ They cause producers to block when the queue is full
➢ They cause consumers to block when the queue is empty

• There are other types of synchronizers
➢ Locks
➢ Latches
➢ Semaphores
➢ Barriers

2

Locks and Synchronizers
java.util.concurrent provides generally useful implementations
• ReentrantLock, ReentrantReadWriteLock
• Semaphore, CountDownLatch, Barrier, Exchanger
• Should meet the needs of most users in most situations

➢ Some customization possible in some cases by subclassing
Otherwise AbstractQueuedSynchronizer can be used to build custom locks and
synchronizers
• Within limitations: int state and FIFO queuing

Otherwise build from scratch
• Atomics
• Queues
• LockSupport for thread parking/unparking, similar to Semaphore

Example: Mutex
Mutex: a non-reentrant mutual-exclusion lock
• Only need to implement exclusive mode methods

State semantics:
• State == 0 means lock is free
• State == 1 means lock is owned
• Owner field identifies current owning thread

• Only owner can release, or use associated Condition
Class outline

class Mutex implements Lock {
 Thread owner = null;
 class Sync extends AbstractQueuedSynchronizer {
 // AQS method implementations ...
 }
 Sync sync = new Sync();
 // implement Lock methods in terms of sync ...
}

Latches
Synchronizer objects that:
• Block threads until a terminal condition is met
• Subsequently release the blocked threads
• Threads participate in synchronization by executing operations to

wait on / modify latch state
CountdownLatch
• Latch based on counting

➢ Terminal condition is that latch has value 0
➢ Constructor accepts number to use as initial value

• Methods
➢ await()
Block until latch has value 0
➢ countDown()
Decrement latch value by 1

5

Uses for Latches

To delay starting of threads until an initial condition is satisfied
• For example: timing a collection of threads

➢ Don’t want threads to start until all are created
➢ In each thread, use a latch to wait for a “starting signal”

• In this case, programming would consist of
➢ Creation of latch with value 1
➢ Creation, starting of threads
➢ Decrement of latch using countDown(), which releases threads

To do a “multi-way join” on thread termination
• Idea: Initialize latch to number of threads
• When each thread terminates, have it decrement latch
• When latch is 0, all threads have terminated

6

FutureTask<T>

A synchronization construct for starting computations now, getting the results later
• A FutureTask<T> object is like a method call

➢ It is invoked
➢ It returns a value of type T

• Unlike a method call, the invocation and return are separate events
➢ A thread can start a FutureTask …
➢ … do other work …
➢ … then reconnect with the FutureTask when it needs the results

The FutureTask<T> constructor requires an object matching the Callable<T>
interface
• Callable<T> like Runnable
• Main method to implement is public T call() (as opposed to void run ())

A FutureTask must be embedded in a thread in order to be invoked
• Thread class includes constructor taking a FutureTask object, which also implements

Runnable
• Starting this thread amounts to “invoking” the FutureTask

To get result of FutureTask object future, execute future.get()
• Thread executing this will block until call is complete
• future.get() can throw several exceptions

7

Counting Semaphores

Counting semaphores act like bounded counters
• Initially, a positive value is given to semaphore
• Operations can atomically decrement (acquire()) or increment

(release()) this value
• If the semaphore value is 0, then acquire() blocks

8

Counting Semaphores

Why “acquire() / release()”?
• Intuition: semaphores dispense “permits”

Count reflect number of permits available

• Acquisition of a permit reduces available permits by 1
• Release increments number of permits by 1

➢ Note: you can release even if you have not acquired!
➢ So release really means: generate a new permit and add it into pool

• The permit idea is only for intuition! There are no explicit permit
objects

9

Counting Semaphores

What are semaphores used for?
• Resource allocation

➢ You have n copies of a resource
➢ You can use a semaphore to ensure that when more than n threads need

the resource, some of them block

• Size restrictions for data structures
➢ Semaphore records maximum size
➢ When you add an element, you need to acquire a permit first
➢ When an element is deleted, you release a permit

10

Barriers

A synchronizer for blocking a collection of threads until
they all are at “the barrier point”
• Threads wait at the barrier by invoking barrier.await()
• When the number of threads indicated in the barrier object have

arrived, all are released
• Barriers can optionally have a Runnable object that is executed

right before threads are released
Uses: simulations
• Simulations are often “step-by-step”
• Computation at each step can be done in parallel using threads
• Don’t want to start next step until current step is complete

11

Task Execution

12

Executors
A middle ground between sequential task processing and thread-
per-task processing

Decouples task submission from task execution

13

public interface Executor {
 void execute(Runnable command);
}

Executors

Executors contain a thread pool of worker threads
When a task comes in, and a thread is available, executor
gives task to an idle thread
If no thread is available, executor queues the result for
future execution
Based on producer / consumer pattern
• Producers: generators of tasks
• Consumers: threads that execute tasks

14

Implement Executor: Java 7

15

Factory and utility

Execution Policies
Executor implementation enables different execution policies
to be defined
An execution policy specifies how tasks get executed
• Which thread?
• What order (FIFO, LIFO, priority order)?
• How many concurrent tasks?
• How many tasks may be queued pending execution?
• Overload policy? (Which task to kill, and how)
• Pre- / post-task actions to perform, if any?

Execution policies are a resource-management tool
Permit management of concurrency vis a vis number of processors,
other resources

16

Thread Pools

Contains collection of homogeneous worker threads
Is tightly bound to a work queue holding tasks to be
executed
Worker threads:
• Request next task from work queue
• Execute it
• Return to waiting for next task

Advantages (vs. creating new thread)
• No need to wait for creation of new task
• No overhead associated with task creation, elimination

17

Thread Pools

Executors class contains factory methods for creating
thread pools, e.g.
• newFixedThreadPool(int nThreads)

• newCachedThreadPool()

• newSingleThreadExecutor()

• newScheduledThreadPool(int corePoolSize)

18

ExecutorService?

The factory methods in Executors return objects in
ExecutorService

ExecutorService
• Is an interface extending Executor
• The new methods include mechanisms for shutting down an

executor
➢ JVM cannot terminate until all non-daemon threads shut down
➢ Worker threads are non-daemon threads
➢ Shutting down an executor requires shutting down these threads and

dealing with any queued tasks

19

What About Tasks Submitted After Shutdown?

They are handled by the rejected execution handler
• Could just swallow the tasks
• Could throw RejectedExecutionException
• Depends on implementation!

More details in book

20

ScheduledExecutorService
An ExecutorService that can schedule commands to run after a
given delay, or to execute periodically.

scheduleAtFixedRate and scheduleWithFixedDelay methods create
and execute tasks that run periodically until cancelled.

21

https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ExecutorService.html

CompletionService

Extends ExecutorService with a blocking completion
queue
• When a task that has been submitted finishes, a Future for it is

put in completion queue
• A user of the completion service can extract next finished

computation by performing take() on completion service

This permits processing of task results in order that they
were completed

22

Designing Thread Pools
Considerations
• How big?
• What execution policy?

Decisions about these considerations are influenced by several factors
• Task dependencies

➢ Some tasks are independent
➢ Some require results of other tasks
➢ Some tasks will even spawn other tasks whose results they need

• Task thread-confinement assumptions
➢ Some tasks assume thread-confinement

• Legacy single-threaded code
• Efficiency

➢ Such tasks should run in a single-threaded thread pool
• Variability in task execution times, responsiveness requirements

➢ Some tasks may run much longer than others
➢ Other tasks may need quick turnarounds

• Tasks that assume thread-specific knowledge
➢ Some tasks may make assumptions about the specific thread on which they are running (e.g. if there is

a ThreadLocal variable)
➢ Such tasks must be handled carefully in thread-pool setting

23

Thread Starvation Deadlock

An issue affecting pool sizing
Suppose you have a fixed-size pool (say, 10)
• Suppose 10 tasks are running, so no free threads
• Suppose further that each of these tasks submits a task to the

pool and then blocks awaiting the result
Deadlock!
• Each of 10 task-threads is blocking
• There are no threads to handle new tasks on which they are

blocking
• No thread can make progress

24

Sizing Thread Pools
Want to avoid thread pools that are “too big” or “too small”
• Too big: contention among threads for memory, other resources
• Too small: bad throughput

We have already seen one consideration for sizing thread pools:
thread-deadlock starvation
Other considerations
• Are tasks compute or I/O intensive?
• How many processors on system?
• How much memory do tasks need?
• What other possibly scarce resources (e.g. JDBC connections) are needed?

Note
• Sometimes you have different classes of tasks that must be run, with

different profiles
• You can use multiple thread pools and tune each independently!

25

Thread-Pool Execution Policies

Executors include thread-pool execution policy
Executors returned by Executors.newXXXThreadPool(),
etc. include built-in execution policies
These methods all use a base implementation given in class
ThreadPoolExecutor
• To customize execution policy, you can call the ThreadPoolExecutor

constructor yourself
• The parameters to the constructor allow you to modify the execution

policy in a variety of ways

26

Using ThreadPoolExecutor

General constructor for this class has following form
ThreadPoolExecutor (

 int corePoolSize,
 int maximumPoolSize,
 long keepAliveTime,
 TimeUnit unit,
 BlockingQueue<Runnable> workQueue,
 ThreadFactory threadFactory,
 RejectedExecutionHandler handler)

27

Saturation Policies (cont.)
ThreadPoolExecutor implements several saturation
policies as (static) classes matching
RejectedExecutionHandler interface
• AbortPolicy (this is the default)
execute() throws RejectedExecutionException if queue is full

• DiscardPolicy
execute() silently discards newest task

• DiscardOldestPolicy
➢ execute() discards task at head of work queue (i.e. next one up for execution)

and tries to resubmit current task
➢ Beware if work queue is a priority queue!

• CallerRunsPolicy
➢ execute() runs the task in the thread calling execute()
➢ This helps give worker threads time to catch up, since new invocations of execute

will be blocked from that thread!

28

Fork/Join Parallelism

29

Divide and Conquer
Quicksort, Mergesort are examples of divide-and-conquer
algorithms
• Basic structure of divide-and-conquer algorithms:

1. If problem is small enough, solve it directly
2. Otherwise

a. Break problem into subproblems
b. Solve subproblems recursively
c. Assemble solutions of subproblems into over-all solution

• If algorithm is tail-recursive, step 2.c. is not necessary
Other examples
• Depth-first search
• Binary search
• Euclid’s algorithm

30

Divide and Conquer

31

Parallelizing Divide-and-Conquer Algorithms

The basic strategy: turn recursive calls into tasks
• Solve the small instances directly
• For larger instances requiring recursive calls, create tasks for

each recursive call
Performance tuning
• Use a larger threshold than that specified in base case of original

algorithm to switch to sequential solving
• Threshold should take account of original problem size, number

of CPUs

32

Fork/Join Parallelism

Parallelizing divide-and-conquer algorithms is frequent enough that Java has
specialized support: Fork/Join parallelism

Basic idea: exploit specialized structure of divide-and-conquer dependencies to
improve parallelism (i.e. execution time)

33

ForkJoinPool

34

The ForkJoinPool is is an implementation of the ExecutorService.

Fork/Join Parallelism

Components of Fork/Join framework
• Specialized executor class: ForkJoinPool

➢ Implements ExecutorService interface
➢ Uses specialized thread-pool management, work distribution strategies

tuned for divide and conquer
• Specialized task class: ForkJoinTask<V>

➢ Implements Future<V> interface
➢ Has numerous specialized operations
➢ Lighter weight than a Java thread. A large number of ForkJoinTasks can

run in a small number of worker threads in a fork-join pool
➢ Two important subclasses

• RecursiveTask: like Callable in that value is returned
• RecursiveAction: like Runnable in that no value is returned

35

ForkJoinPool

The executor for fork-join tasks
• Maintains thread pool
• Allocates work among worker threads

Key attributes
• Limits number of workers to number of CPUs (default) or user-

specified number
• Workers that are waiting for subtasks to complete are put to work

on other subtasks
• Work-stealing used to keep workers busy

➢ Each worker has its own work queue (actually, a work deque)
➢ When a workers deque is empty, it takes work from another workers deque

36

The Fork-Join Framework Structure

38

• The ForkJoinPool uses a central inbound queue and an internal thread pool.
• Each worker thread has its own task queue, to which it can add new tasks

submit

A

Central Queue

Local queue

push
pop

B
push
pop

C
push
pop

Local queue

Local queue

A ForkJoinPool with three worker threads, A, B, and C.

Work Stealing

39

• Idle worker C steals a task from the tail of A’s queue
• Tail has the larger tasks
• A takes from head, C steaks from tail. They do not contend for lock

steal
submit

A

Central Queue

Local queue

push
pop

B
push
pop

C
push
pop

Local queue

Local queue

Deque? Work Stealing?
allows adding / removing elements from both ends
Each worker thread has a deque containing tasks to work on
• When new tasks are forked, they are “pushed” onto the front of the

deque (i.e. opposite of what you do with a queue)
• When a worker finishes a task, or blocks on the current one, it

“pops” the next task from the front of its deque
When a worker’s deque is empty it tries to steal a task from
the back of one of the other workers’ deques
• If it is successful it works on this task, using its own deque to push /

pop subtasks
• Future-like feature of join() ensures results of “stolen” tasks are

available to original task owner

40

Quiz 1:

41

a b c d

Worker 1 queue

Worker 2 is idle and wants to steal a task from worker 1. Worker 2 will
 steal the task

A. a
B. b
C. c
D. d

head tail

ForkJoinTask<V>

Tasks that are managed by ForkJoinPool
Besides usual Future methods (e.g. get()), other key methods are:
• ForkJoinTask<V> fork()

Arranges to asynchronously execute this task
• V join()

Returns the result of the computation when it is done.
• V invoke()

Commences performing this task, awaits its completion if necessary, and returns its result, or
throws an (unchecked) RuntimeException or Error if the underlying computation did so.

• static ForkJoinPool getPool()
Returns the pool hosting the current task execution, or null if this task is executing outside of
any ForkJoinPool

getPool()?
• ForkJoinTasks contain internal reference to the ForkJoinPool they belong to
• When a ForkJoinTask forks another task, the new task inherits the

ForkJoinPool from the caller

42

More on fork(), join()
fork() has effect of submitting task to ForkJoinPool
• Task is placed in deque of “parent task” (i.e. one that performed
fork())

• Task performing fork()keeps executing
join() has effect like get() in Future<V>
• Task performing join() waits until result of subtask is available
• While it is waiting it may start work on other tasks in its deque or

engage in work-stealing
• Note: unlike get(), join() is not a “blocking operation” in the

standard sense: no InterruptedException can be thrown!
• Using join() also forestalls thread-starvation deadlock

➢ Although number of worker threads is fixed …
➢ … join() doesn’t block

43

Structure of a Fork/Join Application

Define class of ForkJoinTasks
ForkJoinTasks create subtasks, call fork, join, etc.
Client application (i.e. one calling Fork/Join application)
does this:
• Create ForkJoinPool
• Create task for entire problem to be solved
• Call execute() / submit() / invoke() method of

ForkJoinPool with this task
Note that ForkJoinTasks do not usually call invoke method
of ForkJoinPool!

44

Code Example:

45

[1--16]

A
Local queue

B

Local queue

Task “Sum 1 to 16” arrives

Task Queue

Worker

Worker

Code Example:

46

A
Local queue

B

Local queue

Worker “A” takes the task
[1--16]

Code Example:

47

A
Local queue

B

Local queue

Worker A forks 2 smaller tasks
[9--16][1--8]

Task Queue

Code Example:

48

A

Local queue

B

Local queue

A takes the task 1-8, and forks 2 smaller tasks

[9 -- 16][5-8][1-4]

Task Queue

Code Example:

49

1-4
Local queue

B

Local queue

A computes the task 1-4

Task Queue

A [5-8] [9 -- 16]

Code Example:

50

1-4

A

Local queue

B

Local queue

B steals the task 9-16

Task Queue

[5-8] [9 -- 16]

Code Example:

51

1-4

A

Local queue

B

Local queue

B steals the task 9-16

Task Queue

[9 -- 16]

[5-8]

Code Example:

52

1-4

A

Local queue

B

Local queue

B takes 9-16, and forks 2
smaller tasks

Task Queue

[13-16]

[5-8]

[9-12]

Code Example:

53

A

Local queue

B

Local queue

A and B finish the small tasks

Task Queue

[5-8]

[9-12]

[13-16]

Performance Tuning of Fork/Join Applications

ForkJoinPools automatically manage number of threads to
try to maximize parallelism
Application must manage task-creation overhead
• Use thresholds, just like with other executor-based parallelizing

approaches
• Thresholds determine when to create new tasks vs. using

sequential solutions
• Because Fork/Join uses lock-free implementations of deques, it

is more forgiving about task boundaries

54

When To Use Fork/Join?

Fork/Join in Java tuned for maximizing parallelism
• Idea is to give solutions to big problems fast
• Algorithms should be in a divide-and-conquer style

Fork/Join in Java also handle dependencies between
tasks well
• join() does not block!
• If join() is only means for inducing task dependencies, then

thread-starvation deadlock cannot happen
• This also simplifies termination detection, since there is no

penalty for waiting for other tasks to finish

55

The Actors Model

A system model supporting a multi-process programming
paradigm
• Model assumes no shared memory
• No assumptions about distributed / non-distributed

Systems consist of multiple actors
• An actor is an independent sequential (“= single-threaded”)

computation
• Each actor has a “mailbox” from which it extracts messages that

it then processes
• Actors communicate by sending each other messages

56

An Actor System

Co
mp
utat
ion

Co
mp
utat
ion

Computation

Actor 1 Actor 2

Actor 3

mailbox

send

recv

57

General Actor Behavior

How actors execute
• They wait until there is a message in their mailbox
• They remove message from mailbox and process it
• Processing may involve sending of messages to other actors
• When processing is complete, they retrieve next message from

mailbox and repeat
This style of programming / system is sometimes called
reactive
• Actors compute by reacting to messages that have arrived
• Otherwise, they are idle

58

Message Passing

Recall: actors communicate via message passing
Different actor frameworks provide different guarantees
about message delivery.
Here are the ones we will use (conform to akka)
• Asynchronous: senders do not know when messages are

received
• At-most-once delivery: every message sent is eventually

received at most once (could be lost, but not duplicated)
• Locally FIFO: messages sent by one actor directly to another are

received in the order sent, lost messages excepted

59

Actor History

Originally proposed by Carl Hewitt in 1970s as basic
model of distributed computing
Theory studied in 1980s / early 1990s by researchers
Mid-1990s: first serious language implementation (Erlang,
Ericsson)
• Used in implementation of telephone switches
• Key features: light-weight (more like tasks than threads), high

degree of concurrency, resiliency in face of failure
Mid-2000s: Scala language (for JVM!) includes actors
Late 2000s: akka open-source library for Scala, Java

60

akka Java Library
Provides implementation of actor model for Java
Key features
• Basic actor framework

➢ Special actor objects
➢ Communication via message-passing methods

• Lightweight
➢ Actors resemble tasks more than threads
➢ ~300 bytes of overhead per actor

• Location transparency
➢ Actors programmed identically, whether local or on remote host
➢ Differences captured in configuration file

• Fault tolerance via hierarchy
➢ Actors arranged in parent/child hierarchy
➢ Parents handle failures of children

61

akka Documentation

General: http://doc.akka.io/
• General overview of actor model as realized in akka
• There are also links for the full documentation of Java version of

akka
• The API / language reference documentation is specific for

Version 2.5.x
For Version 2.5
https://doc.akka.io/docs/akka/2.5.3/java/index.html
• You’ll get a splash screen saying “upgrade”
• Ignore this!

62

http://doc.akka.io/
https://doc.akka.io/docs/akka/2.5.3/java/index.html

Basics of akka Java

akka actors live in an actor system
• Actor system provides actor execution (think “threads”),

message-passing infrastructure
• To create actors, you must first create an actor system
• The relevant Java class: ActorSystem

So, first line of Hello World main() method is:
ActorSystem actorSystem =
ActorSystem.create("Message_Printer");

➢ “Message_Printer” is name of actor system (required)
➢ akka actor system names must not have spaces or punctuation other than

- or _ !

63

Creating Actors in akka Java 2.5 (1/4)

Actors are objects (of course!)
Objects are typically in a subclass of the akka library class
AbstractActor
Step 1 in creating actors: define class of actors
• Here is the relevant import / class declaration

import akka.actor.AbstractActor;
public class MessagePrinterActor extends AbstractActor …

64

Creating Actors in akka Java 2.5 (2/4)
Step 2 in creating actors: finish implementation of actor class
• akka AbstractActor needs instance method: public Receive
createReceive()

• This method describes how a message object should be processed
Hello World example
@Override
public Receive createReceive() {
 return receiveBuilder()
 .match(Double.class, d -> {
 sender().tell(d.isNaN() ? 0 : d, self()); }
)
 .match(Integer.class, i -> {
 sender().tell(i * 10, self()); }

)

65

Creating Actors in akka Java 2.5 (3/4)

In akka, actors can only be created in the context of an
ActorSystem
• Relevant ActorSystem method : ActorRef actorOf(Props
p, String name);

• Return type ActorRef is class of “references to actors” (more
later on this notion)

• String parameter is actor name (no spaces, non-alphanumeric
characters other than -,_!)

• “Props”?

66

Creating Actors in akka Java 2.5 (3/4)

In akka, actors have various configuration information
• Type of mailbox data structure
• How messages actually get delivered to mailbox (“dispatching”)
• Etc.

This information is encapsulated in a Props object for a
given class of actors
To create actors in a class, a Props object for the class
must be constructed

67

Creating Actors in akka Java 2.5 (3/4)

Step 3 in creating actors: create Props object for
actors class.
• This is done in the Hello World main() using factory method
create() in akka Props class

• create() builds Props object with reasonable defaults
(unbounded queues for mailboxes, etc.)

• Relevant Hello World code:

68

Props mpProps = Props.create(MessagePrinterActor.class);

Creating Actors in akka Java 2.5 (4/4)

Step 4 in creating actors: call actorOf() method in
relevant ActorSystem
In Hello World example:
ActorRef mpNode = actorSystem.actorOf(mpProps, “Name”);

• This creates and launches a single actor in actorSystem
• Actor is now ready to receive, process messages

69

Communicating with Actors

Actors compute by processing messages
To send a message to an actor, use ActorRef instance
method tell(Object msg, ActorRef sender)
• tell() takes message (payload) and sender as arguments

➢ sender parameter allows return communication, although it should really be called
“replyTo”

➢ If no return communication desired, specify null for sender field

• tell() is often said to implement “fire and forget” communication
➢ Method call returns as soon as message handed off to infrastructure
➢ No waiting to see if recipient actually receives it

In Hello World example:
mpNode.tell("Hello World", null);

70

Shutting Down an ActorSystem

ActorSystem objects use worker threads internally to
execute actors
These threads must be killed off before an actor-based
application can terminate
To do this: call ActorSystem instance method
terminate()
From Hello World example:
actorSystem.terminate();

71

Moving Information from ActorSystem to Java

The tell() method permits messages to be sent to
actors
• In Hello World, this was how information was passed from “rest

of Java” into actor
• Actors can also send messages to each other inside an actor

system
How can actors communicate with outside world?
Outside world (i.e. “rest of Java”) is not an actor, so tell() cannot
be used!
Solution: Patterns.ask()

72

MessageAcknowledgerActor.java
public class MessageAcknowledgerActor extends AbstractActor {
 …
 public void onReceive(String msg) throws Exception {
 ActorRef sender = getSender();
 System.out.printf("Message is: %s%n", msg);
 sender.tell(msg + " message received", sender);
 }
 }
}

73

getSender()?

Instance method in AbstractActor
Returns ActorRef for sender of current message being
processed in Receive
• The sender is the second parameter of the tell() method call

corresponding to the current message
• A more accurate characterization: rather than thinking of this as

message sender (it may not be!) think of it as “Reply-To”, as in e-
mail

74

Actor Communication

Actor(Ref)s communicate by sending each other
messages
To send a message to recipient r, a sender s needs to
invoke r.tell()
This means the sender needs to know r!
Different ways to do this
• Send a message to s containing r as payload
• Send message to s with r as sender
• In constructor associated with s, include r as parameter

75

Messages

Messages are objects
Valid classes of messages must match Serializable
interface
• Serializable objects can be converted into bytes
• This is needed for actors to communicate over communication

networks, which just transmit bytes
They should also be immutable
• Objects are properly constructed
• Fields are private, final
• State never changes

76

Quiz 1

In Actor model, actors communicate through

A. Shared Memory
B. Pipe
C. Message
D. Shared Files

77

Quiz 2

When Actors work concurrently, we don’t need locking
and blocking

78

A. True
B. False

Dynamic Actor Creation

In Java we saw that tasks can create other tasks
In akka Java, actors can also create other actors!
• Actor creation so far has been done using calls to actorOf()

method of ActorSystem object
• It may also be done by calling actorOf() method of
ActorContext object
➢ An ActorContext object is the environment surrounding an actor
➢ To get the ActorContext of an AbstractActor actor, call
getContext() instance method

79

Supervision
Every actor has exactly one supervising actor
• When one actor creates another using first actor’s context, first actor is

supervisor of second
➢ First actor often also called parent
➢ Second usually called child or subordinate

• What about actors created via ActorSystem actorOf()?
➢ Every actor system three top-level actors (called guardians) that are started automatically

• / The root guardian
• /system The System guardian (child of /)
• /user The Guardian Actor (child of /)

➢ When an object is created using actorOf() in ActorSystem, it is by default made a child of
/user

What supervisors do
• Delegate tasks to children
• Take remedial action when children fail

Supervision is basis of fault tolerance in akka

80

Getting Supervisory Information

ActorContext has methods for retrieving parent, child
information
• ActorRef parent()

Return parent of actor associated with context
• java.lang.Iterable<ActorRef> getChildren()

Return children as a Java Iterable
• ActorRef getChild(String name)

Return child having given name, or null if there is no such child

To find parent of given actor, invoke following in body of
actor definition: getContext().parent()

81

Supervisory Hierarchy

Supervision relationship
induces a tree
• Every actor (except /) has exactly

one parent
• Every actor has ≥ 0 children

Every actor can be identified
via path (ActorPath) in tree
To get path of ActorRef, use
path() instance method
For actorA
• Parent: user
• Children: actorB1, actorB2
• Path: /user/actorA

/

syste
muser

actor
A

actor
B2

actor
B1

parent of
actorA

children of
actorA

82

How an Actor Can Find Its Name
getName()? name()? No
No such instance methods in AbstractActor
getSelf().getName()? getSelf().name()? No
No such instance methods in ActorRef
getContext().getName()?
getContext().name()? No
No such instance methods in ActorContext
Solution: go through ActorPath
• ActorPath objects have name() method returning name

(String) of actor at that path
• So, getSelf().path().name() returns name of yourself

83

Supervision in Detail
When an actor fails (i.e. throws an exception) a special system
message is sent to its parent
• Systems messages have their own message queue; they are not handled by
createReceive()

• No guarantees about precedence of system messages over regular
messages

Parent actor has four choices in akka
1. Resume the failed child in child’s accumulated internal state
2. Restart the failed child in its initial state
3. Stop the failed child permanently
4. Escalate (i.e. fail itself, handing off responsibility to its own parent)
Communication associated with these choices is via system
messages that are handled by special system-message queue
This queue is only used for supervision (i.e. parent-child) communication

84

Resumption of Failed Child

createReceive() method in child is re-invoked
• Message being processed when failure occurred is lost
• Processing of messages in child’s message queue resumes

When to do this?
• Maybe if transient system fault caused failure
• Maybe if there is a bug in child that doesn’t affect its ability to

process future messages

85

Restarting a Failed Child
Idea
• Create new actor instance
• Replace actor instance in

ActorRef for failed child with new
instance
➢ Path unchanged
➢ So is name

• Invoke Receive() method of new
actor instance to start
processing messages in
message queue

Message processed during
failure is lost, but no pending
messages in failed child’s
mailbox are

ActorRef

Receive() {
…
}

Actor

Keep this Replace
this

86

Stopping an Actor
Stopping a child during supervision involves a general actor-
stopping technique
ActorContext objects include following method
void stop(ActorRef actor)
• Stops actor
• Processing of current message completes first, however

What about messages in mailbox when actor is stopped? And
those sent to stopped actor?
• These are called dead letters
• akka uses a special actor (/deadLetters) to handle these
• There are also mechanisms for retrieving them

What about children?
• They are stopped also,
• This percolates downwards through supervision hierarchy, to children’s

children, children’s children’s children, etc.

87

Actors Can Stop Other Actors …

… even themselves!
If following is executed in AbstractActor …
getContext().stop(getSelf())

… then it stops itself! (And consequently its children,
grandchildren, etc.)
• When an actor is stopped, its supervisor is notified
• So are other actors that are monitoring this actor
• akka buzzwords for this: DeathWatch, DeathPact

➢ Special Terminated messages (these are not system messages, so are delivered
to regular mailboxes) are sent to actors that have registered with stopped actor

➢ Registration is done via watch() method in ActorContext
➢ De-registration: unwatch() method in same class

88

Failure Escalation

As name suggests, escalation in response to child failure
means that parent fails by throwing same exception as
child
Parent’s parent then must handle failure

89

Details of Supervision

Each AbstractActor object contains a
SupervisorStrategy object
• To obtain SupervisorStrategy object, execute actor’s
supervisorStrategy() instance method

• This method may be overridden in order to customize supervision
approach

The SupervisorStrategy determines how failures of
children will be handled

90

Two Kinds of SupervisorStrategy

AllForOneStrategy (subclass of
SupervisorStrategy)
• If one child fails, apply supervision strategy to all of the children,

not just the failing one
• Used if children are tightly coupled
OneForOneStrategy (also subclass of
SupervisorStrategy)
• Apply supervision strategy only to failing child; other children left

unaffected
• Used if children are largely independent

91

Deciders

Core of a SupervisionStrategy: decider
• A decider maps exception classes to directives, which describe

which of four mechanisms to use to recover
• A directive has one of four forms: Escalate, Restart, Resume,

Stop
You may customize a SupervisionStrategy by
changing the decider
There is also a default decider

92

akka and the Java Memory Model

Actors do not (intentionally) share memory
In a local application (single JVM), one still needs to worry
about visibility

akka guarantees the following
• If one actor sends a message to another, then pending writes

before the send are guaranteed to be visible after the receipt

93

Akka “happens before” rules

To prevent visibility and reordering problems on actors,
Akka guarantees the following two “happens before” rules:
• The actor send rule: the send of the message to an actor

happens before the receive of that message by the same actor.

• The actor subsequent processing rule: processing of one
message happens before processing of the next message by the
same actor.

94

Distributed

95

Distributed: It is hard

Reliability:
• power failure, old network equipment, network congestion,

coffee in router, rodents, DDOS attacks...

96

Latency:
• loopback vs local net

vs shared congested
local net vs internet

Consistency vs Availability

97

CAP Theorem

It is impossible for a distributed data store to
simultaneously provide more than two out of the following
three guarantees
• Consistency

➢ Every read receives the most recent write or an error

• Availability
➢ Every request receives a (non-error) response

• Partition tolerance
➢ The system continues to operate despite an arbitrary number of messages

being dropped (or delayed) by the network between nodes

98

CAP Theorem

No distributed system is safe from network failures, thus
network partitioning generally has to be tolerated.

We left with two options:
• Consistency
• Availability.

99

CAP Theorem
Choose consistency over availability
• the system will return an error or a time-out if particular information cannot be

guaranteed to be up to date due to network partitioning.

Choosing availability over consistency
• the system will always process the query and try to return the most recent

available version of the information, even if it cannot guarantee it is up to date
due to network partitioning.

In the absence of network failure – that is, when the distributed
system is running normally – both availability and consistency can
be satisfied.

100

ACID vs BASE
ACID: Atomicity, Consistency, Isolation, Durability

Base: Basically Available, Soft state, Eventual consistency

Database systems designed with traditional ACID guarantees in
mind such as RDBMS choose consistency over availability

Systems designed around the BASE philosophy, common in the
NoSQL movement for example, choose availability over consistency

101

Akka Cluster

102

Node

Actors

Joining

103

When a new node is started it sends a message to all seed nodes and
 then sends join command to the one that answers first.

Leadership

104

Leader

Leader: A single node in the cluster that acts as the leader.
Managing cluster convergence and membership state transitions.

Leadership

105

Leader
Down

Cluster Member Lifecycle

106

Joining the Cluster: Seed Node

107

Seed Node Config

108

akka.cluster.seed-nodes = [
"akka.tcp://ClusterSystem@host1:2552",
"akka.tcp://ClusterSystem@host2:2552"]

You define the seed nodes in the configuration file (application.conf):

https://doc.akka.io/docs/akka/2.5/cluster-usage.html

Network Partition

109

Leade
r

Leader

Gossip & Heartbeats

110

Leader

Node Roles

111

User API

Node details
• What roles am I in, what is my address

Join, Leave, Down
• Programmatic control over cluster membership

Register listeners for cluster events
• Every time the cluster state changes the listening actor will get a

message

112

Distributed Publish Subscribe

113

• How do I send a message to an actor without knowing which node it is
running on?

• How do I send messages to all actors in the cluster that have registered
interest in a named topic?

Distributed Publish Subscribe

114

• Pub Sub Mediator actor (akka.cluster.pubsub.DistributedPubSubMediator)
manages a registry of actor references and replicates the entries to peer actors
among all cluster nodes or a group of nodes tagged with a specific role.

Distributed Publish Subscribe

115

Distributed Publish Subscribe

116

Cluster Singleton

For some use cases it is convenient and sometimes
also mandatory to ensure that you have exactly one
actor of a certain type running somewhere in the
cluster.
• single point of responsibility for certain cluster-wide

consistent decisions, or coordination of actions across the
cluster system

• single entry point to an external system
• single master, many workers
• centralized naming service, or routing logic

117

Cluster Singleton

118

Singleton

• Single-point of bottleneck
• Failure: another singleton instance will eventually be

started.

Cluster Singleton

119

Cluster Sharding

120

Distribute actors across several nodes in the cluster and interact with them using
their logical identifier, but without having to care about their physical location in the
cluster, which might also change over time.

Summary

Akka Actors
Akka Remote
Akka Cluster
Akka Persistence
Akka Streams
• An intuitive and safe way to do asynchronous, non-blocking

backpressured stream processing.
Akka HTTP
• Modern, fast, asynchronous, streaming-first HTTP server and

client.
… 121

	Slide 1: Announcements
	Slide 2: Synchronizers
	Slide 3: Locks and Synchronizers
	Slide 4: Example: Mutex
	Slide 5: Latches
	Slide 6: Uses for Latches
	Slide 7: FutureTask<T>
	Slide 8: Counting Semaphores
	Slide 9: Counting Semaphores
	Slide 10: Counting Semaphores
	Slide 11: Barriers
	Slide 12: Task Execution
	Slide 13: Executors
	Slide 14: Executors
	Slide 15: Implement Executor: Java 7
	Slide 16: Execution Policies
	Slide 17: Thread Pools
	Slide 18: Thread Pools
	Slide 19: ExecutorService?
	Slide 20: What About Tasks Submitted After Shutdown?
	Slide 21: ScheduledExecutorService
	Slide 22: CompletionService
	Slide 23: Designing Thread Pools
	Slide 24: Thread Starvation Deadlock
	Slide 25: Sizing Thread Pools
	Slide 26: Thread-Pool Execution Policies
	Slide 27: Using ThreadPoolExecutor
	Slide 28: Saturation Policies (cont.)
	Slide 29: Fork/Join Parallelism
	Slide 30: Divide and Conquer
	Slide 31: Divide and Conquer
	Slide 32: Parallelizing Divide-and-Conquer Algorithms
	Slide 33: Fork/Join Parallelism
	Slide 34: ForkJoinPool
	Slide 35: Fork/Join Parallelism
	Slide 36: ForkJoinPool
	Slide 38: The Fork-Join Framework Structure
	Slide 39: Work Stealing
	Slide 40: Deque? Work Stealing?
	Slide 41: Quiz 1:
	Slide 42: ForkJoinTask<V>
	Slide 43: More on fork(), join()
	Slide 44: Structure of a Fork/Join Application
	Slide 45: Code Example:
	Slide 46: Code Example:
	Slide 47: Code Example:
	Slide 48: Code Example:
	Slide 49: Code Example:
	Slide 50: Code Example:
	Slide 51: Code Example:
	Slide 52: Code Example:
	Slide 53: Code Example:
	Slide 54: Performance Tuning of Fork/Join Applications
	Slide 55: When To Use Fork/Join?
	Slide 56: The Actors Model
	Slide 57: An Actor System
	Slide 58: General Actor Behavior
	Slide 59: Message Passing
	Slide 60: Actor History
	Slide 61: akka Java Library
	Slide 62: akka Documentation
	Slide 63: Basics of akka Java
	Slide 64: Creating Actors in akka Java 2.5 (1/4)
	Slide 65: Creating Actors in akka Java 2.5 (2/4)
	Slide 66: Creating Actors in akka Java 2.5 (3/4)
	Slide 67: Creating Actors in akka Java 2.5 (3/4)
	Slide 68: Creating Actors in akka Java 2.5 (3/4)
	Slide 69: Creating Actors in akka Java 2.5 (4/4)
	Slide 70: Communicating with Actors
	Slide 71: Shutting Down an ActorSystem
	Slide 72: Moving Information from ActorSystem to Java
	Slide 73: MessageAcknowledgerActor.java
	Slide 74: getSender()?
	Slide 75: Actor Communication
	Slide 76: Messages
	Slide 77: Quiz 1
	Slide 78: Quiz 2
	Slide 79: Dynamic Actor Creation
	Slide 80: Supervision
	Slide 81: Getting Supervisory Information
	Slide 82: Supervisory Hierarchy
	Slide 83: How an Actor Can Find Its Name
	Slide 84: Supervision in Detail
	Slide 85: Resumption of Failed Child
	Slide 86: Restarting a Failed Child
	Slide 87: Stopping an Actor
	Slide 88: Actors Can Stop Other Actors …
	Slide 89: Failure Escalation
	Slide 90: Details of Supervision
	Slide 91: Two Kinds of SupervisorStrategy
	Slide 92: Deciders
	Slide 93: akka and the Java Memory Model
	Slide 94: Akka “happens before” rules
	Slide 95: Distributed
	Slide 96: Distributed: It is hard
	Slide 97: Consistency vs Availability
	Slide 98: CAP Theorem
	Slide 99: CAP Theorem
	Slide 100: CAP Theorem
	Slide 101: ACID vs BASE
	Slide 102: Akka Cluster
	Slide 103: Joining
	Slide 104: Leadership
	Slide 105: Leadership
	Slide 106: Cluster Member Lifecycle
	Slide 107: Joining the Cluster: Seed Node
	Slide 108: Seed Node Config
	Slide 109: Network Partition
	Slide 110: Gossip & Heartbeats
	Slide 111: Node Roles
	Slide 112: User API
	Slide 113: Distributed Publish Subscribe
	Slide 114: Distributed Publish Subscribe
	Slide 115: Distributed Publish Subscribe
	Slide 116: Distributed Publish Subscribe
	Slide 117: Cluster Singleton
	Slide 118: Cluster Singleton
	Slide 119: Cluster Singleton
	Slide 120: Cluster Sharding
	Slide 121: Summary

