CMSC 433
Programming Language Technologies and
Paradigms

Introduction
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CMSC433 History

CMSC433 used to be a study of Concurrent programming.

Now it is on program proofs and verification.
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Software is everywhere
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Software has bugs

A software bug is a defect in a computer program or system
that causes an undesired resullt.

Your device ran into a problem and needs to restart.
We're just collecting some error info, and then we'll

restart for you.
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Build Better Software

We test software to check whether software satisfies expectations.
Testing can show errors but not their absence.

Software errors in critical systems can cause major disasters.

This course is an introduction to techniques to get certainty that your
program does what it is supposed to do.
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Course logistics

» 6 assignments

» Midterm 10/23 (Wednesday)

» Final exam: Monday, December 15

» Several surveys and quizzes (on ELMS)
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Grading
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Assignments 50%
Quizzes & surveys 5%
Attendance 5%
Midterm 15%

Final 25%




Key resources

Class web page (syllabus, assignments, course notes)
* https://www.cs.umd.edu/class/fall2025/cmsc433/

ELMS (announcements, grades)
Piazza (communication, discussion)
Gradescope (assignments, exams)
Office Hours
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https://www.cs.umd.edu/class/fall2025/cmsc433/
https://www.cs.umd.edu/class/fall2025/cmsc433/

Course Structure

» Topics:
e Dafny
SAT solving and its applications
Solver aided programming
Computer aided (interactive) theorem proving
Testing
Supplementary reading
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Dafny

» Dafny is both a programming language and a formal verification tool
designed to help developers write programs that are mathematically
proven to be correct.

» In Dafny, you can write preconditions, postconditions, and invariants.
Dafny then uses an automated theorem prover (based on SMT
solvers like Z3) to check whether your program meets its
specification.

» This means Dafny doesn'’t just test code on some inputs—it proves
properties hold for all possible executions.
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SAT/SMT Solvers

» SAT/SMT solvers are computer programs which aim to solve the
Boolean satisfiability problem.

» They are used in program verification (like Dafny, SPARK, Why3),
theorem proving, and software/hardware correctness.

» Tools like Dafny rely on SMT solvers (e.g., Z3) to mathematically
prove that your code always meets its specification.

» Modern SAT/SMT solvers (like Z3, CVC5, MiniSat) can solve huge,
real-world problems surprisingly fast.
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Computer Aided (interactive) Theorem Proving

» A software tool to assist with the development of formal
proofs by human—machine collaboration.
* Human guide the proof construction.
* Machine checks the low-level details

» Examples:
* Rocq (Coq), Isabelle HOL, F*, Lean4
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Building Reliable Software
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Cost of Software Errors

$2.8 Trillion in 2020 alone

Source: Forbes

https://www.forbes.com/councils/forbestechcouncil/2023/12/26/costly-code-
the-price-of-software-errors/
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Cost of Software Errors

Eestimated 50% of programmers time spent on finding

and fixing bugs.
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Software failure examples: 2024 CrowdStrike
Incident

On July 19 2024, CrowdStrike
distributed a faulty update to its Falcon
Sensor security software that caused
widespread problems with Microsoft
Windows.

Roughly 8.5 million systems crashed
and were unable to properly restart.

The worldwide financial damage has
been estimated to be at least US $10
billion.
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Nobody travels on 07/19
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Software failure examples: Ariane flight V88

Ariane flight V88 (Ariane 5 rocket)
exploded right after launch in 1996.

Conversion of 64-bit float to 16-bit
integer caused an exception (made it
crash)

European space agency spent 10
years and $7 billion to produce Ariane
5
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Software failure examples: Pentium Floating

ABa581-656

Point (FDIV) Bug e
| || |te|® |
A hardware bug affecting the floating-point unit pentium™

(FPU) of the early Intel Pentium processors in 1994, | |

L4142588
INTEL®®1992

. Incorrect result through floating point division
- Rarely encountered in practice

1 in 9 billion floating point divides with random parameters
would produce inaccurate results (Byte magazine)

. 475 million dollars, reputation of Intel.
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Zune Leap Year Freeze

At midnight of December 31, 2008, all the millions of Zune 30
that Microsoft sold froze.

BOOL ConvertDays (UINT32 days, SYSTEMTIME* lpTime) {

year = ORIGINYEAR; /* = 1980 */
while (days > 365) {
if (IsLeapYear (year)) {
if (days > 366) {

days -= 366;
year += 1;
}
}else(
days -= 365;

year += 1;
}
}
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Not just economic loss: Toyota Unintended
Acceleration

Bugs in electronic throttle control
system (2009).

Car kept accelerating on its own.

May have caused up to 89 deaths
In accidents.

Recalls of 10 million vehicles.
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Not just economic loss, Therac-25

. a computer-controlled

radiation therapy machine
(1985-1987)

. some patients were given
massive overdoses of
radiation.

. Killed four and left two others
with lifelong injuries.
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Problem Source

. Requirements: Incomplete, inconsistent, ...

. Design: Flaws in design

- Implementation: Programming errors,...

. Tools: Defects in support systems and tools used

CMSC433 Fall 2025
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How can you get some assurance that a
program does what you want it to do?
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Approaches to Validation

« Social

» Code reviews

« Extreme/pair programming
« Methodological

« Design patterns

» Test-driven development

« Version control

« Bug Tracking Even the most formal can still
» Technological have holes:

. . * did you prove the right thing?
« Static ana IyS|S * do your assumptions match reality?
* Fuzzers

o _

« Sound Type Systems
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Testing

» Evaluating software by observing its execution

» Execute program with the intent of finding failures (try
out inputs, see if outputs are correct)

CMSC433 Fall 2025
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How do we test?

» Test: try out inputs, see if outputs are correct

» Testing means to execute a program with the intent of
detecting failure

» terminology, testing levels, unit testing, black box vs
white box, principles of test-set construction/coverage,
automated and repeatable testing (JUnit)

CMSC433 Fall 2025

27



Formal verification

» Determine whether a piece of software fulfils a set of
formal requirements in every execution

* Formally prove method correct (find evidence of
absence of failure)

CMSC433 Fall 2025
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Formal verification

» Scaled to 10s of lines of code in 1970s

» Now, research projects scale to real software:
 CompCert: A verified C compiler
* sel4: verified microkernel OS
* Ynot: verified DBMS, web services

» In another 50 years?

CMSC433 Fall 2025
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Some failures are obvious

» obviously wrong output/behavior
* non-termination
e crash
* freeze

» ... but most are not!
In general, what constitutes a failure, is defined by: a
specification!
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Specification

» Specification: An unambiguous description of what a
program should do.

» Bug: Failure to meet specification.

» Unclear Specification leads to failure
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Specification: Example

Sort(src: Integer Array) -> Integer Array
» Specification:

* Requires: srcis an array of integer

* Ensures: returns a sorted array

Is this a good specification?

CMSC433 Fall 2025
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Specification: Example

Sort (src: Integer Array) -> Integer Array

» Specification:
* Requires: srcis an array of integer
* Ensures: returns a sorted array

Sort([3,1,4,5]) == [ 1 X
Sort([3,1,4,5]) == [1,2,3]1 ¥
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Specification: Example

Sort (src: Integer Array) -> Integer Array
» Specification:
* Requires: srcis an array of integer

* Ensures: returns a sorted array with only elements
from the input

Sort([3,1,4,5]) == [1,1,4 1 X
Sort([3,1,4,5]) == [1,3,3,5] &
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Specification: Example

Sort (src: Integer Array) -> Integer Array
» Specification:

* Requires: srcis an array of integer

* Ensures: returns a permutation of src that is sorted

Sort([ ]) == ?

Sort(null) == °

Permutation®?
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Specification: Example

Sort(src: Integer Array) -> Integer Array
» Specification:

* Requires: src is a non-null array of integer

* Ensures: returns a permutation of src that is sorted

CMSC433 Fall 2025
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Specification of a method

method m( )
Requires: Precondition

Ensures: Postcondition

Means:

* If a caller of m () fulfills the required Precondition, then
the callee m () ensures that the Postcondition holds
afterm() finishes.

* Garbage in, garbage out
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Failure vs Correctness

» What constitutes a failure

A method fails when it is called in a state fulfilling the
required precondition of its contract and it does not

terminate in a state fulfilling the postcondition to be
ensured.
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Failure vs Correctness

. A method is correct means:

* whenever it is started in a state fulfilling the required
precondition, then it terminates in a state fulfilling the
postcondition to be ensured.

. Correctness amounts to proving absence of failures! A
correct method cannot fail!
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Verification

» Testing cannot guarantee correctness, i.e., absence of
failures

» Verification: Mathematically prove method correct
* Goal: find evidence for absence of failures

» This course: Formal verification (logics, tool support)
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Summary

» CS433 introduces techniques for ensuring program
correctness—that is, proving that a program does what it
IS iIntended to do. The course provides a mathematical
foundation for the rigorous analysis of real-world
software systems.

» The skills developed in this course are in high demand,
as nearly all human interactions are now mediated by
software—and it is especially critical to guarantee the
correctness of Al-generated programs.

41
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