CMSC 433
Programming Language Technologies and
Paradigms

Introduction

CMSCA433 Fall 2025

CMSC433 History

CMSC433 used to be a study of Concurrent programming.

Now it is on program proofs and verification.

CMSC433 Fall 2025

Software is everywhere

CMSC433 Fall 2025

MRI Scanner Cutaway

Radio Patient

Frequency '
Coil

Gradient
Coils

Magnet

Scanner

Software has bugs

A software bug is a defect in a computer program or system
that causes an undesired resullt.

Your device ran into a problem and needs to restart.
We're just collecting some error info, and then we'll

restart for you.

64% complete

i
éﬁ \CROWDSTR”(E

CMSC433 Fall 2025

Build Better Software

We test software to check whether software satisfies expectations.
Testing can show errors but not their absence.

Software errors in critical systems can cause major disasters.

This course is an introduction to techniques to get certainty that your
program does what it is supposed to do.

CMSC433 Fall 2025 5

Course logistics

» 6 assignments

» Midterm 10/23 (Wednesday)

» Final exam: Monday, December 15

» Several surveys and quizzes (on ELMS)

CMSC433 Fall 2025

Grading

CMSC433 Fall 2025

Assignments 50%
Quizzes & surveys 5%
Attendance 5%
Midterm 15%

Final 25%

Key resources

Class web page (syllabus, assignments, course notes)
* https://www.cs.umd.edu/class/fall2025/cmsc433/

ELMS (announcements, grades)
Piazza (communication, discussion)
Gradescope (assignments, exams)
Office Hours

v

v

v

v

v

CMSC433 Fall 2025

https://www.cs.umd.edu/class/fall2025/cmsc433/
https://www.cs.umd.edu/class/fall2025/cmsc433/

Course Structure

» Topics:
e Dafny
SAT solving and its applications
Solver aided programming
Computer aided (interactive) theorem proving
Testing
Supplementary reading

CMSC433 Fall 2025

Dafny

» Dafny is both a programming language and a formal verification tool
designed to help developers write programs that are mathematically
proven to be correct.

» In Dafny, you can write preconditions, postconditions, and invariants.
Dafny then uses an automated theorem prover (based on SMT
solvers like Z3) to check whether your program meets its
specification.

» This means Dafny doesn'’t just test code on some inputs—it proves
properties hold for all possible executions.

CMSC433 Fall 2025 10

SAT/SMT Solvers

» SAT/SMT solvers are computer programs which aim to solve the
Boolean satisfiability problem.

» They are used in program verification (like Dafny, SPARK, Why3),
theorem proving, and software/hardware correctness.

» Tools like Dafny rely on SMT solvers (e.g., Z3) to mathematically
prove that your code always meets its specification.

» Modern SAT/SMT solvers (like Z3, CVC5, MiniSat) can solve huge,
real-world problems surprisingly fast.

CMSC433 Fall 2025

11

Computer Aided (interactive) Theorem Proving

» A software tool to assist with the development of formal
proofs by human—machine collaboration.
* Human guide the proof construction.
* Machine checks the low-level details

» Examples:
* Rocq (Coq), Isabelle HOL, F*, Lean4

CMSC433 Fall 2025 12

CMSC433 Fall 2025

Building Reliable Software

13

Cost of Software Errors

$2.8 Trillion in 2020 alone

Source: Forbes

https://www.forbes.com/councils/forbestechcouncil/2023/12/26/costly-code-
the-price-of-software-errors/

CMSC433 Fall 2025

14

Cost of Software Errors

Eestimated 50% of programmers time spent on finding

and fixing bugs.

1000 0000 0011
0000
1111

0000
0011
0111
1100
1110
1110

0000
0111
1111
1001
11
1011
1011
1110
0111

0001

CMSC433 Fall 2025

1100 0011 1011 1000 0101 0101 1110
1011 0101 1111 0000
1011 1101 1111 0000

1110 1111 1110

0111 1010 0000
1010 0000

1111 1110

1110

1110

00
0000
1110
0000
) 0000
0 1110
0 1110
1000
1000
0000
1110
1011
1101 1110

0111

0001
1100

0110 0001
0110 0001

1000

1110
0000
0000
11
11
11

15

Software failure examples: 2024 CrowdStrike
Incident

On July 19 2024, CrowdStrike
distributed a faulty update to its Falcon
Sensor security software that caused
widespread problems with Microsoft
Windows.

Roughly 8.5 million systems crashed
and were unable to properly restart.

The worldwide financial damage has
been estimated to be at least US $10
billion.

CMSC433 Fall 2025

16

Nobody travels on 07/19

CMSC433 Fall 2025

TURKISH | soArDING PASS \
AIRLINES | BINIs KaRT!

| NAME/isIM

| MAMAT ANWAR

FROM / NEREDEN

ALMATY

TO / NEREYE

ISTANBUL

FLIGHT CLASS DATE TIME
Ugus SINIF TARIH SAAT

TK 0353 Y 19JUL09:

SEAT / KOLTUK

GROUP - 13D

0/0 081 55 ¥arP
235 2227 3693 87/4

) 4
A STAR ALLIANCE MEMBER %q

17

Software failure examples: Ariane flight V88

Ariane flight V88 (Ariane 5 rocket)
exploded right after launch in 1996.

Conversion of 64-bit float to 16-bit
integer caused an exception (made it
crash)

European space agency spent 10
years and $7 billion to produce Ariane
5

CMSC433 Fall 2025

18

Software failure examples: Pentium Floating

ABa581-656

Point (FDIV) Bug e
| || |te|® |
A hardware bug affecting the floating-point unit pentium™

(FPU) of the early Intel Pentium processors in 1994, | |

L4142588
INTEL®®1992

. Incorrect result through floating point division
- Rarely encountered in practice

1 in 9 billion floating point divides with random parameters
would produce inaccurate results (Byte magazine)

. 475 million dollars, reputation of Intel.

CMSC433 Fall 2025 19

Zune Leap Year Freeze

At midnight of December 31, 2008, all the millions of Zune 30
that Microsoft sold froze.

BOOL ConvertDays (UINT32 days, SYSTEMTIME* lpTime) {

year = ORIGINYEAR; /* = 1980 */
while (days > 365) {
if (IsLeapYear (year)) {
if (days > 366) {

days -= 366;
year += 1;
}
}else(
days -= 365;

year += 1;
}
}

CMSC433 Fall 2025

20

Not just economic loss: Toyota Unintended
Acceleration

Bugs in electronic throttle control
system (2009).

Car kept accelerating on its own.

May have caused up to 89 deaths
In accidents.

Recalls of 10 million vehicles.

CMSC433 Fall 2025 21

Not just economic loss, Therac-25

. a computer-controlled

radiation therapy machine
(1985-1987)

. some patients were given
massive overdoses of
radiation.

. Killed four and left two others
with lifelong injuries.

CMSC433 Fall 2025 22

Problem Source

. Requirements: Incomplete, inconsistent, ...

. Design: Flaws in design

- Implementation: Programming errors,...

. Tools: Defects in support systems and tools used

CMSC433 Fall 2025

23

How can you get some assurance that a
program does what you want it to do?

CMSC433 Fall 2025

24

Approaches to Validation

« Social

» Code reviews

« Extreme/pair programming
« Methodological

« Design patterns

» Test-driven development

« Version control

« Bug Tracking Even the most formal can still
» Technological have holes:

. . * did you prove the right thing?
« Static ana IyS|S * do your assumptions match reality?
* Fuzzers

o _

« Sound Type Systems
CMSC433 Fall 2025 25

All of these methods should be used!

 Formal verification

Testing

» Evaluating software by observing its execution

» Execute program with the intent of finding failures (try
out inputs, see if outputs are correct)

CMSC433 Fall 2025

26

How do we test?

» Test: try out inputs, see if outputs are correct

» Testing means to execute a program with the intent of
detecting failure

» terminology, testing levels, unit testing, black box vs
white box, principles of test-set construction/coverage,
automated and repeatable testing (JUnit)

CMSC433 Fall 2025

27

Formal verification

» Determine whether a piece of software fulfils a set of
formal requirements in every execution

* Formally prove method correct (find evidence of
absence of failure)

CMSC433 Fall 2025

28

Formal verification

» Scaled to 10s of lines of code in 1970s

» Now, research projects scale to real software:
 CompCert: A verified C compiler
* sel4: verified microkernel OS
* Ynot: verified DBMS, web services

» In another 50 years?

CMSC433 Fall 2025

29

Some failures are obvious

» obviously wrong output/behavior
* non-termination
e crash
* freeze

» ... but most are not!
In general, what constitutes a failure, is defined by: a
specification!

CMSC433 Fall 2025

30

Specification

» Specification: An unambiguous description of what a
program should do.

» Bug: Failure to meet specification.

» Unclear Specification leads to failure

CMSC433 Fall 2025

31

Specification: Example

Sort(src: Integer Array) -> Integer Array
» Specification:

* Requires: srcis an array of integer

* Ensures: returns a sorted array

Is this a good specification?

CMSC433 Fall 2025

32

Specification: Example

Sort (src: Integer Array) -> Integer Array

» Specification:
* Requires: srcis an array of integer
* Ensures: returns a sorted array

Sort([3,1,4,5]) == [1 X
Sort([3,1,4,5]) == [1,2,3]1 ¥

CMSC433 Fall 2025

33

Specification: Example

Sort (src: Integer Array) -> Integer Array
» Specification:
* Requires: srcis an array of integer

* Ensures: returns a sorted array with only elements
from the input

Sort([3,1,4,5]) == [1,1,4 1 X
Sort([3,1,4,5]) == [1,3,3,5] &

CMSC433 Fall 2025

34

Specification: Example

Sort (src: Integer Array) -> Integer Array
» Specification:

* Requires: srcis an array of integer

* Ensures: returns a permutation of src that is sorted

Sort([]) == ?

Sort(null) == °

Permutation®?

CMSC433 Fall 2025

35

Specification: Example

Sort(src: Integer Array) -> Integer Array
» Specification:

* Requires: src is a non-null array of integer

* Ensures: returns a permutation of src that is sorted

CMSC433 Fall 2025

36

Specification of a method

method m()
Requires: Precondition

Ensures: Postcondition

Means:

* If a caller of m () fulfills the required Precondition, then
the callee m () ensures that the Postcondition holds
afterm() finishes.

* Garbage in, garbage out

CMSC433 Fall 2025

37

Failure vs Correctness

» What constitutes a failure

A method fails when it is called in a state fulfilling the
required precondition of its contract and it does not

terminate in a state fulfilling the postcondition to be
ensured.

CMSC433 Fall 2025

38

Failure vs Correctness

. A method is correct means:

* whenever it is started in a state fulfilling the required
precondition, then it terminates in a state fulfilling the
postcondition to be ensured.

. Correctness amounts to proving absence of failures! A
correct method cannot fail!

CMSC433 Fall 2025

39

Verification

» Testing cannot guarantee correctness, i.e., absence of
failures

» Verification: Mathematically prove method correct
* Goal: find evidence for absence of failures

» This course: Formal verification (logics, tool support)

CMSC433 Fall 2025

40

Summary

» CS433 introduces techniques for ensuring program
correctness—that is, proving that a program does what it
IS iIntended to do. The course provides a mathematical
foundation for the rigorous analysis of real-world
software systems.

» The skills developed in this course are in high demand,
as nearly all human interactions are now mediated by
software—and it is especially critical to guarantee the
correctness of Al-generated programs.

41
CMSC433 Fall 2025

	Slide 1: CMSC 433 Programming Language Technologies and Paradigms
	Slide 2: CMSC433 History
	Slide 3: Software is everywhere
	Slide 4: Software has bugs
	Slide 5: Build Better Software
	Slide 6: Course logistics
	Slide 7: Grading
	Slide 8: Key resources
	Slide 9: Course Structure
	Slide 10: Dafny
	Slide 11: SAT/SMT Solvers
	Slide 12: Computer Aided (interactive) Theorem Proving
	Slide 13: Building Reliable Software
	Slide 14: Cost of Software Errors
	Slide 15: Cost of Software Errors
	Slide 16: Software failure examples: 2024 CrowdStrike incident
	Slide 17: Nobody travels on 07/19
	Slide 18: Software failure examples: Ariane flight V88
	Slide 19: Software failure examples: Pentium Floating Point (FDIV) Bug
	Slide 20: Zune Leap Year Freeze
	Slide 21: Not just economic loss: Toyota Unintended Acceleration
	Slide 22: Not just economic loss, Therac-25
	Slide 23: Problem Source
	Slide 24: How can you get some assurance that a program does what you want it to do?
	Slide 25: Approaches to Validation
	Slide 26: Testing
	Slide 27: How do we test?
	Slide 28: Formal verification
	Slide 29: Formal verification
	Slide 30: Some failures are obvious
	Slide 31: Specification
	Slide 32: Specification: Example
	Slide 33: Specification: Example
	Slide 34: Specification: Example
	Slide 35: Specification: Example
	Slide 36: Specification: Example
	Slide 37: Specification of a method
	Slide 38: Failure vs Correctness
	Slide 39: Failure vs Correctness
	Slide 40: Verification
	Slide 41: Summary

