Identifying the Fundamental Drivers of Inspection Costs and Benefits

Adam Porter
University of Maryland

Overview

• Software inspection
• Research questions
• Experiments
• Future work

Software Inspection

• Software inspection: An in-process technical review of any software work product conducted for the purpose of finding and eliminating defects. [NASA-STD-2202-93]
• Software work products: e.g., requirements specs, designs, code, test plans, documentation
• Defects: e.g., implementation errors, failures to conform to standards, failures to satisfy requirements

Inspection Process Model

• Most organizations use a three-step inspection process
 – individual analysis
 • use Ad Hoc or Checklist techniques to search for defects
 – team analysis
 • reader paraphrases artifact
 • issues from individual and team analyses are logged
 – rework
 • Author resolves and repairs defects

Overview

• Widely-used (especially in large-scale development)
 – Few practical alternatives
 – Demonstrated cost-effectiveness
 – Significant effect on interval (calendar time to complete)
 – Effort per defect is high
 – Many defects go undiscovered

Current Practice

• Substantial inefficiencies
 – 1 code inspection per 300-350 NCSL (~ 1500 / .5MNCSL)
 – 20 person-hours per inspection (not including setup and rework)
Research Conjectures

- Several variants have been proposed
 - [Fagan76, LMW79, PW85, BL89, Brothers90, Johnson92, SMT92, Gilb93, KM93, Hoffman94, RD94]

- Weak empirical evaluation
 - Cost-benefit analyses are simplistic or missing
 - Poor understanding of cost and benefit drivers

- Low-payoff areas emphasized
 - Process
 - Group dynamics

- High-payoff areas de-emphasized
 - Individual analysis techniques
 - Tool support

Inspection Costs and Benefits

- Potential drivers
 - Structure (tasks, task dependencies)
 - Techniques (individual and group defect detection)
 - Inputs (artifact, author, reviewers)
 - Technology (tool support)
 - Environment (deadlines, priorities, workloads)

Overview

- Software inspection
- Research questions
- Experiments
- Future work

Process Structure

- Main structural differences
 - Team size: large vs. small
 - Number of teams: single vs. multiple
 - Coordination of multiple teams: parallel vs. sequential

- H_0: none of these factors has any effect on effort, interval, or effectiveness
 - 6-person development team at Lucent, plus 11 outside inspectors
 - Optimizing compiler (65K lines of C++)
 - Harvey Siy joined team as Inspection Quality Engineer (IQE)
 - Instrumented 88 inspections over 18 months (6/94 – 12/95)

Experimental Design

- Independent variables
 - Number of inspection teams (1 or 2)
 - Number of reviewers per team (1, 2, or 4)
 - Repair between multiple teams (required or prohibited)

- Control group: 1-team with 4-reviewers

- Dependent variables
 - Inspection effort (person hours)
 - Inspection interval (working days)
 - Observed defect density (defects/KNCSL)
 - Repair statistics

Treatment Allocation and Validity

- Treatment allocation rule
 - IQE notified via email when code unit becomes available
 - Treatment assigned on a random basis
 - Reviewers selected at random (without replacement)

- Internal validity
 - Selection (natural ability)
 - Maturation (learning)
 - Instrumentation (code quality)

- External validity
 - Scale (project size)
 - Subject representativeness (experience)
 - Team/project representativeness (application domain)
Main Effects

- Effectiveness: no significant effects

Process Inputs

- Independent vars insignificant, but variation is high
 - are the effects of unknown factors obscuring the effects of process structure?
 - are the effects of unknown factors greater than the effect of process structure?
- Process inputs are likely source of variation
- Develop statistical models
 - generalized linear models (Poisson family with logarithmic link)
 - model variables reflect process structure and process inputs
 - remove insignificant factors

Defect Density

- Model: Defects ~ Functionality + log(Size) + R_B + R_F
 - explains $\approx 50\%$ of variation using 10 of 88 degrees of freedom
- Process input is more influential than process structure
 - structure: $\approx 2\%$, inputs: $\approx 50\%$

Summary

- Structural factors had no significant effect on effectiveness
 - more reviewers didn’t always find more defects
- Process inputs were far more influential than process structure
- Best explanation of inspection effectiveness (so far)
 - not process structure
 - reviewer expertise

Analysis Techniques: Groups vs. Individuals

- Traditional view: meetings are essential
 - many defects or classes of defects are found during meetings
 - these defects would not have been found otherwise
- Research hypotheses:
 - inspections with meetings are no more effective than those without
 - inspections with meetings do not find specific classes of faults more often than those without
 - benefit of additional individual analysis is greater than or equal to the benefit of meeting
Candidate Inspection Methods

- **Preparation -- Inspection (PI)**
 - individuals become familiar with artifact
 - team meets to identify defects
- **Detection -- Collection (DC)**
 - individuals identify issues
 - team meets to classify issues and identify defects
- **Detection -- Detection (DD)**
 - individuals identify issues
 - individuals identify more issues

Experimental Design

- **Subjects:**
 - 21 UMD CS graduate students (Spring '95)
 - 27 professional software developers (Fall '96)
- **Artifacts:**
 - software requirements specs (WLMS and CRUISE)
- **Independent Variables:**
 - inspection method (PI, DC, or DD)
 - inspection round (R1 or R2)
 - specification to be inspected (W or C)
 - presentation order (WC or CW)
- **Dependent Variables:**
 - individual and team defect detection ratios
 - meeting gain and loss rates

Summary

- **H_1:** Inspections with meetings find more defects than those without
 - DD method found more faults than any other method
 - PI method was indistinguishable from DC method
- **H_2:** Inspections with meetings find specific classes of defects more often than those without
 - 5 of 42 defects are found more often by inspections with meetings than by those without
 - only 1 difference is statistically significant
- **H_3:** Benefit of additional individual analysis is less than or equal to the benefit of meeting
 - no differences in 1st phase team performance
 - significant differences in 2nd phase team performance

Additional Data

- similar study at the University of Hawaii shows same results (Johnson97, Porter and Johnson97)
- industrial case study of 3000 inspections showed that meetingless inspections were as effective as those with meetings (Perpich, Perry, Porter, Votta, and Wade97)
- Best explanation of inspection effectiveness (so far)
 - not process structure nor group dynamics
 - reviewer expertise
Improved Individual Analysis

- Develop an improved individual analysis
- Measure effect on overall inspection effectiveness
- Classification of individual analysis methods
 - analysis techniques: strategies for detecting defects
 - prescriptiveness: nonsystematic - systematic
 - reviewer responsibility: population of defects to be found
 - scope: specific - general
 - coordination policy: assignment of responsibilities to reviewers
 - overlap: distinct - identical

Systematic Inspection Hypothesis

- Current Practice: Ad Hoc or Checklist methods
 - nonsystematic techniques with general and identical responsibilities
- Alternative approach
 - systematic techniques with specific and distinct responsibilities
- Research Hypothesis
 - \(H_0 \): Inspections using non-systematic techniques with general and identical responsibilities find more defects than those using systematic techniques with specific and distinct responsibilities

Defect-based Scenarios

- Ad Hoc method based on defect taxonomy [BW]
- Checklist method based on taxonomy plus items taken from industrial checklists.
- Scenario method refined Checklist items into procedures for detecting a specific class of defects
- Three groups of scenarios
 - data type inconsistencies
 - incorrect functionality
 - ambiguity/missing functionality

Experimental Design

- Subjects
 - 48 UMD CS graduate students (Spring and Fall ’93)
 - 21 professional software developers (Fall ’95)
- Software requirements specs (WLMS and CRUISE)
- Independent variables
 - replication (E1, E2)
 - round (R1, R2)
 - analysis method (Ad Hoc, Checklist, or Scenario)
 - specification (W or C)
 - order (CW, WC)
- Dependent variables
 - individual & team defect detection rates
 - meeting gain & loss rates

Individual Inspection Performance: WLMS

- Scenarios outperform all methods
- Checklist performance no better than Ad Hoc
Summary

• Current models may be unfounded
 – meetings not necessarily cost-effective
 – more complex structures did not improve effectiveness
• Reviewer expertise appears to be dominant factor in inspection effectiveness
 – structure had little effect
 – inputs more influential than structure
 – individual effects more influential than group effects
 – improved individual analysis methods significantly improved performance

Field Testing

• Goal: reduce interval without reducing effectiveness
• Solution approach: remove coordination
 – private vs. shared individual analysis
 – meetings vs. meetingless
 – sequential vs. parallel tasks
• Developed web-based inspection tool (HyperCode)
 – Event monitor for distributed development groups
• Have deployed the tool
 – Naperville, IL and Whippany, NJ
 – multi-phase experiment