CMSC 451: Mid-Term Exam, Spring 2002
11AM – 12:15PM, March 14th 2002

If you cannot come up with complete solutions but have some partial idea that looks promising, please write that down clearly. Write your answers using pseudo-code in the same style as the textbook.

Undergraduate students: please do problems 1, 2, 3. Graduate students: please do problems 1, 2, 4.

1. Let \(G = (V, E) \) be an undirected graph represented in adjacency matrix format. Give as fast an implementation as you can, of depth-first search. (If you prefer, you can just say how to modify the adjacency list version given in the textbook.) Spell out, with proof, the worst-case running time of your algorithm. (10 points)

2. Show that there is a directed graph \(G = (V, E) \), vertices \(s, t \in V \), and a weight for each edge in \(E \), such that the following holds:

 There exists a path \(P \) such that \(P \) is now a shortest path from \(s \) to \(t \) in \(G \). However, there is some value \(\alpha \) such that if we increase the weight of each edge by the same value \(\alpha \), then \(P \) is no longer a shortest path from \(s \) to \(t \) in \(G \).

 [Hint: There is such a graph \(G \) with very few vertices.] (5 points)

3. (For undergraduate students only.) You are given an undirected graph \(G = (V, E) \) in adjacency list format. You are also given that \(G \) is a simple cycle: i.e., we can order the vertices as \(v_0, v_1, \ldots, v_{n-1} \) (where \(n = |V| \)) such that the set of edges \(E \) is exactly the set

\[
\{(v_0, v_1), (v_1, v_2), \ldots, (v_{n-1}, v_n), (v_n, v_0)\}.
\]

Given a weight for each edge of \(G \), give an \(O(V) \) time algorithm to find a minimum spanning tree in \(G \). [Hint: Make use of the fact that \(G \) is a simple cycle.] (5 points)

4. (For graduate students only.) You are given an undirected binary tree \(T = (V, E) \) in adjacency list format; each edge has a given weight. The distance between any two vertices is the total weight of the unique path that connects them. Give an \(O(V^2) \) time algorithm to print out the distance between every pair of vertices in \(V \). Justify why the running time is \(O(V^2) \). (10 points)