CMSC 858T: Randomized Algorithms, Spring 2003
Mid-Term Exam

Instructions: There are three questions. If you think you have some ideas that deserve partial credit, please itemize them concisely. Also, if you are unable to solve a problem but can do so by making some assumptions, please clearly state these assumptions and then proceed. Good luck!

1. (5 points) In this problem, we will view a permutation \(\pi \) of \(\{1, 2, \ldots, n\} \) as a sequence of \(n \) distinct numbers \(\pi_1, \pi_2, \ldots, \pi_n \), each of which lies in \(\{1, 2, \ldots, n\} \). You are given positive integers \(n \) and \(k \leq n \). Show that there is a collection \(\mathcal{F} \) of permutations of \(\{1, 2, \ldots, n\} \), with the following property:

 for any ordered sequence \((i_1, i_2, \ldots, i_k)\) of \(k \) distinct elements of the set \(\{1, 2, \ldots, n\} \), there is a permutation \(\pi \in \mathcal{F} \) such that \(\pi_{i_1} < \pi_{i_2} < \cdots < \pi_{i_k} \).

Important Note: The set \(\mathcal{F} \) in your solution should have a cardinality of the form \(f(k) \cdot \log n \), for some function \(f \).

2. We will consider tail bounds here.

 (a) (2 points) For any two random variables \(Y \) and \(Z \) such that \(Y, Z \in \[0, 1\] \), show that \(\text{coVar}[Y, Z] \leq \mathbb{E}[YZ] \leq (\mathbb{E}[Y] + \mathbb{E}[Z])/2 \). (Here, \(\text{coVar}[Y, Z] \) denotes the covariance of \(Y \) and \(Z \).)

 (b) (5 points) Use part (a) to show that there is a constant \(c > 0 \) such that the following holds.

 Suppose \(X_1, X_2, \ldots, X_n \) are random variables, each lying in \([0, 1]\), such that each \(X_i \) is dependent on at most \(d \) of the other \(X_j \). (For instance, if \(d = 3 \), then \(X_1 \) may depend on \(X_2, X_4, X_7 \) and be independent of the others, \(X_2 \) may depend on \(X_1, X_8 \) and be independent of the others, etc.) Let \(X = \sum_i X_i \) with \(\mu = \mathbb{E}[X] \). Then, for any \(\delta \in (0, 1) \),

 \[
 \Pr[X \leq \mu(1 - \delta)] \leq \frac{c \cdot d}{\mu \delta^2}.
 \]

3. We are given an undirected graph \(G = (V,E) \) with a non-negative weight \(w_i \) given for each vertex \(i \). We want to find a subset \(S \) of \(V \) with minimum total weight, in such a way that every edge of \(G \) has at least one end-point in \(S \).

 (a) (3 points) Formulate this problem as an ILP, and give its LP relaxation.

 (b) (5 points) Give a simple deterministic rounding scheme for this LP, to get a 2–approximation algorithm; justify why the approximation ratio of your algorithm is at most 2.