CMSC 858T: Randomized Algorithms
Spring 2003
Ungraded Homework Assignment #3, handed out April 4, 2003

The suggested deadline by which to finish this assignment is April 17th; since this assignment is ungraded, you don’t need to turn it in – just compare your solutions with the solutions I give.

Notation: The set \(\{1, 2, \ldots, k \} \) is denoted \([k]\).

0. Read Handouts 5 and 6.

1. Recall that we showed in class that for any graph with \(m \) edges, there is a cut with at least \(m/2 \) edges; derandomize this using the method of conditional probabilities. Look at your derandomization carefully, and see if the deterministic algorithm obtained is actually quite intuitive.

2. Recall Problem 4 of HW 1, where we construct \((n,k)\)-universal sets. Suppose you are given a constant \(k\); give a deterministic polynomial-time algorithm to construct \((n,k)\)-universal sets with the same number of rows (of the matrix) as guaranteed by the probabilistic argument.

3. For parts (a) and (b) of this problem, let \(X_1, X_2, \ldots, X_T \) be independent r.v.s, each taking values in \([0,1]\). We will let \(\bar{X} \doteq (X_1, X_2, \ldots, X_\ell) \), and all events and r.v.s considered here are completely determined by the value of \(\bar{X} \). Suppose \(\mathcal{E} \) is some event. A random variable \(g = g(\bar{X}) \) is said to be a well-behaved estimator for \(\mathcal{E} \) (w.r.t. \(\bar{X} \)) iff it satisfies the following properties (P1), (P2), (P3) and (P4), \(\forall t \leq \ell, \forall T = \{i_1, i_2, \ldots, i_t\} \subseteq [\ell], \forall b_1, b_2, \ldots, b_t \in \{0,1\} \); for convenience, let \(\mathcal{B} \) denote “\(\bigwedge_{s=1}^t (X_{i_s} = b_s) \)”.

(P1) \(\mathbf{E}[g|\mathcal{B}] \) is efficiently computable;

(P2) \(\Pr[\mathcal{E}|\mathcal{B}] \leq \mathbf{E}[g|\mathcal{B}] \);

(P3) if \(\mathcal{E} \) is increasing, then \(\forall i_{t+1} \in ([\ell] - T), \mathbf{E}[g|(X_{i_{t+1}} = 0) \wedge \mathcal{B}] \leq \mathbf{E}[g|(X_{i_{t+1}} = 1) \wedge \mathcal{B}] \); and

(P4) if \(\mathcal{E} \) is decreasing, then \(\forall i_{t+1} \in ([\ell] - T), \mathbf{E}[g|(X_{i_{t+1}} = 1) \wedge \mathcal{B}] \leq \mathbf{E}[g|(X_{i_{t+1}} = 0) \wedge \mathcal{B}] \).

Taking \(g \) to be the indicator variable for \(\mathcal{E} \) will satisfy (P2), (P3) and (P4), but not necessarily (P1). So the idea is that we want to approximate quantities such as \(\Pr[\mathcal{E}|\mathcal{B}] \) “well” (in the sense of (P2), (P3) and (P4)) by an efficiently computable value (\(\mathbf{E}[g|\mathcal{B}] \)).

For any r.v. \(X \) and event \(\mathcal{A} \), let \(\mathbf{E}'[X] \) and \(\mathbf{E}'[X|\mathcal{A}] \) respectively denote \(\min\{\mathbf{E}[X], 1\} \) and \(\min\{\mathbf{E}[X|\mathcal{A}], 1\} \). Suppose \(\Pr[X_i = 1] = p_i \) for each \(i \). Let \(\mathcal{E}_1, \mathcal{E}_2, \ldots, \mathcal{E}_k \) all be increasing events with respective well-behaved estimators \(h_1, h_2, \ldots, h_k \).

(a). Define, for all \(i \in [k] \),

\[
\begin{align*}
 u_i &= \mathbf{E}[h_i|\bigwedge_{j=1}^t (X_j = b_j)]; \\
 u'_i &= \min\{u_i, 1\}; \\
 v_i &= \mathbf{E}[h_i|(X_{i+1} = 0) \wedge \bigwedge_{j=1}^t (X_j = b_j)]; \\
 v'_i &= \min\{v_i, 1\}; \\
 w_i &= \mathbf{E}[h_i|(X_{i+1} = 1) \wedge \bigwedge_{j=1}^t (X_j = b_j)]; \\
 w'_i &= \min\{w_i, 1\}.
\end{align*}
\]
Show that for all $i \in [k]$, $u_i' \geq (1 - p_{t+1}) \cdot v_i' + p_{t+1} \cdot w_i'$.

(b). Prove that for any non-negative integer $t \leq \ell - 1$ and any $\vec{b} = (b_1, b_2, \ldots, b_t) \in \{0, 1\}^t$,

$$
\prod_{i=1}^{k}(1 - E'[h_i] \bigwedge_{j=1}^{t}(X_j = b_j)) \leq (1 - p_{t+1}) \cdot \prod_{i=1}^{k}(1 - E'[h_i]((X_{t+1} = 0) \land \bigwedge_{j=1}^{t}(X_j = b_j))) +
\quad p_{t+1} \cdot \prod_{i=1}^{k}(1 - E'[h_i]((X_{t+1} = 1) \land \bigwedge_{j=1}^{t}(X_j = b_j))).
$$

One approach is to use the result of part (a) along with an induction on k.

(c). Use part (b) to derandomize the approach using FKG that we developed for the edge-disjoint paths problem.

4(a). Suppose $X = \sum_{i=1}^{t} X_i$, where the random variables X_i lie in $[0, 1]$ and are pairwise independent. Let the mean of X be μ. Is it true that for any $a > 0$, $\Pr[|X - \mu| \geq a] \leq \mu/a^2$?

(b). Suppose the X_i are in fact d-wise independent for some $d \geq 4$. Suggest a possibly better approach to bound $\Pr[|X - \mu| \geq a]$ than the above.

5. Suppose we have a BPP algorithm A for a language L and an input instance x for which the following holds: A uses R perfectly random bits on input x, and is correct with probability at least $2/3$. (That is, if $x \in L$, A will say “Yes” with probability at least $2/3$; if $x \notin L$, then A will say “No” with probability at least $2/3$. Also, R is bounded by some fixed polynomial of $|x|$.) Suppose we want to boost this “$2/3$” to $1 - 1/R$; recall that the standard way to do this boosting is to run A on x an odd number of times and then taking the majority outcome.

Show how to do this boosting in polynomial time, using $O(R \log R)$ random bits. Next, use problem 4 to show how to do this boosting in polynomial time, using only $O(R)$ random bits.

6. Recall the two-party problem of deciding Equality, in the communication complexity setting: Alice and Bob have n-bit strings x and y respectively, and want to determine if $x = y$ or not. Consider the following protocol, where t is a predetermined parameter. Alice chooses a random integer r from the range $[t]$, and sends the pair $(r, x \mod r)$ to Bob; Bob replies “Yes” to Alice if $x \mod r = y \mod r$, and replies “No” otherwise. Note that the protocol communicates $O(\log t)$ bits. Suppose you desire the error probability to be at most p; then, how large a t is sufficient?

7. We are given parameters n, $k \leq n$, and $\epsilon \in (0, 1)$. Design a randomized hashing strategy whose domain is $[n]$ and such that the hash function can be specified using only $O(\log k + \log(1/\epsilon) + \log \log n)$ random bits, such that the following holds: for any given subset S of $[n]$ such that $|S| = k$, the hash values of all the elements of S are different with probability at least $1 - \epsilon$. (We are not claiming that this simultaneously holds for all S; instead, for every given S, the claim is true.)