CMSC 131: Chapter 30 (Supplement)
Sorting

Sorting and Searching

Sorting: Given a list of items from any ordered domain (integers, doubles, Strings, Dates, ...) permute (rearrange) the elements so they are in increasing order.

Searching: Given a list of items and given a designated query item q, determine whether q appears in the list, and if so, then where.

Sorting and Searching: are two of the most fundamental tasks in all of computer science.
- Although these may seem pretty simple, there are many different ways to solve these problems.
- These approaches are quite different in terms of complexity and efficiency.
- There is a 722 page book (by D. E. Knuth) devoted to just these two topics alone!

Note: We will talk only about Sorting (one type of Sort: Selection Sort). You will see Search in CMSC 132.

Selection Sort

Selection Sort: one of the simplest sorting algorithms known. (Recall: an algorithm is a method of solving a problem.)

Input Argument: Let a denote the array to be sorted. We assume only that the elements of a are from any class that implements the Comparable interface, that is, it defines a public method:

 int compareTo(Object obj)

This compares the current object to object obj. It returns:

 < 0 if this < obj
 == 0 if this == obj
 > 0 if this > obj

Examples of Objects that implement Comparable:
- All the numeric wrappers (Integer, Double, Float, etc.)
- String
- Any class of yours, for which you define compareTo().
Selection Sort Algorithm

Selection Sort: Works as follows. Let a[0 ... n-1] be the array to be sorted.

for (i running from 0 up to n-1){
 Let j = index of the smallest of a[i], a[i+1], ... a[n-1];
 swap a[i] with a[j];
}

Example:

```
3 6 11 8 15 5
```

Selection Sort

```java
public static void selectionSort( Comparable[] a ) {
    for ( int i = 0; i < a.length; i++ ){
        int j = indexOfMin( i, a );
        swap( i, j, a );
    }
}

private static int indexOfMin( int start, Comparable[] a ) {
    Comparable min = a[start];
    int minIndex = start;
    for ( int i = start + 1; i < a.length; i++ )
        if ( a[i].compareTo( min ) < 0 ){
            min = a[i];
            minIndex = i;
        }
    return minIndex;
}

private static void swap( int i, int j, Comparable[] a ) {
    Comparable temp = a[i];
    a[i] = a[j];
    a[j] = temp;
}
```
Using Selection Sort

Polymorphism: Selection sort is polymorphic in the sense that it can be applied to any array whose elements implement the Comparable interface.

Example:

```java
Integer[] list1 = { new Integer( 8 ), new Integer( 6 ) };
    // blah, blah, blah... */ new Integer( 5 )
String[] list2 = { "Carol", "Bob", "Ted", "Alice", "Schultzie" };
selectionSort( list1 );
selectionSort( list2 );
```

Running time of Selection Sort

Efficiency: How long does Selection Sort take to run?

What should we count?

- Milliseconds of execution time?
 - Depends on the speed of your particular computer.
 - We prefer a platform-independent measure.

- Statements of Java code that are executed?
 - This depends on the programmer.
 - We would like a quantity that is a function of the algorithm, not the specific way it was coded.

- Number of times we call compareTo()?
 - This is an acceptable machine/programmer-independent statistic.
 - This method is called every time through the innermost loop and depends only on the algorithm.
Running time of Selection Sort

Running time depends on the contents of the array:

- **Length:** The principal determinant of running time is the number of elements, \(n \), in the array.

- **Contents:** For some sorting algorithms, the running time may depend on the contents of the array. E.g., some algorithms run faster if the initial array is nearly sorted.

- **Worst-case running time:** Among all arrays of length \(n \), consider the one that has the **highest** running time.

- **Average-case running time:** Average the running time over all arrays of length \(n \). (This is very messy, so we won’t do it.)

Worst-case running time:

- Let \(T(n) \) denote the time (measured as the number of calls to `compareTo()`) required in the worst-case to sort an array of \(n \) items using Selection Sort.

Running time of Selection Sort

How many times is `compareTo()` called? Call this \(T(n) \).

- Let \(n \) denote the length of array \(a \).

- We go through the for-loop in `selectionSort()` exactly \(n \) times,
 for \(i = 0, 1, 2, \ldots, n-1 \).

- Each time we call `indexOfMin(i, a)`, we call `compareTo()` to compare the min to each element of the subarray \(a[i+1, \ldots, n-1] \).

- In general, any subarray \(a[j, \ldots, k] \) contains \(k - j + 1 \) elements.

- Thus, each call to `indexOfMin(i, a)` makes \((n-1) - (i+1) + 1 = n-i-1 \) calls to `compareTo()`.

- To compute \(T(n) \), we simply add up \(n-i-1 \) for \(i = 0, 1, \ldots, n-1 \):

\[
\begin{align*}
T(n) &= 0 + 1 + \cdots + (n-3) + (n-2) + (n-1) \\
&= \sum_{i=0}^{n-1} i
\end{align*}
\]
Running time of Selection Sort

What is the value of this sum?

\[T(n) = 0 + 1 + 2 + 3 + \ldots + (n-3) + (n-2) + (n-1) \]

An old addition trick: Group terms to get a common sum of values:

\[T(n) = 0 + 1 + 2 + 3 + \ldots + (n-3) + (n-2) + (n-1) \]
\[= (1 + (n-1)) + (2 + (n-2)) + (3 + (n-3)) + \ldots \]
\[= n + n + n + \ldots \]

There are roughly \((n-1)/2\) pairs, each of which sums to \(n\). Thus, the total value is roughly \(n(n-1)/2\).

(In fact, this is exactly correct.)

Final running time:

\[T(n) = \frac{n(n-1)}{2} = \frac{n^2 - n}{2} = \frac{n^2}{2} - \frac{n}{2} \]

Plot of Running Time vs. Array Size

Selection Sort Running Time vs. Array Size
Big-

"Oh" Notation

Observation: Efficiency is most critical for large \(n \).

- As \(n \) becomes large, the quadratic \(\frac{n^2}{2} \) term grows much more rapidly than the linear \(\frac{n}{2} \) term.
- Small constant factors in running time like \((1/2) \) depend on the programmer's implementation, and are best ignored.
- By ignoring the effects of
 - lower order terms (like \(n/2 \))
 - constant factors (like \(1/2 \))

we say that the running time grows **quadratically with** \(n \), that is, "on the order of \(n^2 \), or succinctly \(O(n^2) \).

Big-

"Oh" Notation

"Big-Oh" Notation: a concise way of expressing the running time of an algorithm by ignoring less critical issues such as

- lower order (slower growing) terms and
- constant multiplicative factors.

Thus, the running time: \(T(n) \) is simply \(O(n^2) \).

Formal Mathematical Definition of "Big-Oh":
- We will leave this for later courses (CMSC 250 and 351).