Networking Support In Java

Fawzi Emad
Chau-Wen Tseng

Department of Computer Science
University of Maryland, College Park

Advanced Programming Concepts

- Objected-oriented support in Java for
 - Exception handling
 - Streams
 - Threads
 - Graphics user interfaces (GUIs)
 - Networking

- Look at networking as example of OO design
Overview

Networking

- Background
- Concepts
- Java’s object-oriented view
- Java’s networking API
 (Application Program Interface)
- Network applications

This lecture

Next lecture

Networking Background

Definition

- Set of computers using common protocols to communicate over connecting media

History

- 1969 ARPANET
- 1986 NSFnet
- 1995 Internet
Networking Concepts

- Protocols
- Network model
- Internet addresses
- Ports
- Sockets
- URLs
- Reliability
- Connection vs. packet oriented
- TCP vs. UDP

Protocols

- Definition
 - Formal description of formats and rules
- Used for
 - Message formats
 - Sequence & order of actions
- Needed by computers to exchange information
- Vital for networking
Protocols – Email Delivery

Network Model

- Open Systems Interconnection (OSI) model
 - Multiple layers (7)
 - One function each
 - Each layer relies on previous layer

- Designed to reduce complexity using abstraction
Network Model – Layers

- **Physical layer**
 - Transmit data as 0’s and 1’s over connection

- **Data-link layer**
 - Between two physically connected computers

- **Network layer**
 - Between any two computers connected to network

- **Transport layer**
 - Deliver network data to application

- **Application layer**
 - Between two applications using network

Network Model – VOIP Example

- **Voice over IP (VOIP)**
Internet (IP) Address

- **Unique address for machine on internet**
 - Get from ISP when connecting to internet
 - Allows network to find your machine

- **Format**
 - 32-bit unsigned integer ⇒ 128.8.128.8
 - Domain name ⇒ cs.umd.edu

- **Name and address for local machine**
 - Localhost
 - 127.0.0.1

Internet (IP) Address

- **Domain Name System (DNS)**
 - DNS servers on internet
 - Can look up IP address associated with name
 - DNS server may need to query other DNS servers
 - edu DNS server queries umd.edu server to find cs.umd.edu

- **Machine can have multiple IP addresses**
 - Virtual machines
Internet (IP) Address

- **Problem**
 - Running out of 32-bit IP addresses
 - Caused by initial address allocation
 - Stanford & MIT given more IP addresses than China
- **Switching to 128-bit IP addresses in IPv6**
 - 1+ million addresses per square meter on Earth

Ports

- **Abstraction to identify (refine) destination**
 - Provide multiple destinations at single IP address

- **Format**
 - Unsigned 16-bit integer (0 to 65,535)
 - Ports 0 to 4096 often reserved & restricted

- **Many ports pre-assigned to important services**
 - 21 ftp (file transfer)
 - 23 telnet (remote terminal)
 - 25 SMTP (email)
 - 80 http (web)
 - ...
Sockets

- Application-level abstraction
 - Represents network connection
 - Implemented in software
 - Supports both UDP and TCP protocols
- History
 - Introduced in Berkley UNIX in 1980s
 - Networking API

Sockets

- Socket is bound to port number
 - Receives data packet
 - Relays to specific port
Uniform Resource Locators (URLs)

- Represent web resources
 - Web pages
 - Arbitrary files
 - ...

- Examples
 - https://login.yahoo.com/
 - file:///dir/my.txt

Uniform Resource Locators (URLs)

- Consists of
 - Protocol
 - http
 - ftp
 - https (secure http)
 - file
 - ...
 - IP address (or domain name)
 - Port (optional)
 - Reference to anchor (optional)
Reliability

- **Reliable**
 - Data guaranteed to
 - Arrive in order
 - More overhead
 - Slower

- **Unreliable**
 - Data not guaranteed to
 - Arrive ⇒ lost data
 - Arrive in order ⇒ out of order data
 - Less overhead
 - Faster
 - Transfers responsibility to higher layer
 - Extra work for higher layer
 - Compensate with timeouts
 - Estimate packet lost if longer than average round trip
Reliability

- Reliable layers
 - Data-link

- Unreliable layers
 - Physical
 - Network

- Can be either
 - Transport
 - Reliable ⇒ TCP
 - Unreliable ⇒ UDP
 - Application

Ways To Connect

1. Connection-oriented
2. Packet-oriented
Connection Oriented

Approach
- Reserve (single) communication channel
- Send stream of data along channel

Also called
- Circuit switching
- Stream oriented

Example
- Telephone call (current)

Connection Oriented

Protocol

![Connection Oriented Protocol Diagram]

- Server:
 - Create Server Socket
 - Accept
 - Read/Write
 - Close Socket

- Client:
 - Establish Connection
 - Create Socket
 - Communicate
 - Read/Write
 - Close Socket
Connection Oriented

- Advantages
 - Simpler scheme
 - Easier to use
 - Higher quality communication
 - Less likely to lose data (at network layer)

Packet Oriented

- Approach
 - Break message up into packets
 - Transmit packets separately
 - Assemble packets at destination

- Also called
 - Packet switching
 - Connectionless

- Example
 - US Mail
 - VOIP (Voice over IP)
Packet Oriented

- Protocol

- Advantages
 - Can share communication channel
 - Higher utilization of channels
 - Can utilize multiple channels at once
 - Can reroute around failed channels
Internet

- **Network layer**
 - Internet Protocol (IP)

- **Transport layer**
 - User Datagram Protocol (UDP)
 - Transmission Control Protocol (TCP)
Internet Protocol (IP)

- Packet oriented
- Packets **routed** between computers
- Unreliable

![Diagram of network communication](image)

User Datagram Protocol (UDP)

- Packet oriented
- Message split into datagrams
- Send datagrams as packets on network layer
- Unreliable but fast
- Application must deal with lost packets
- Examples
 - Ping
 - Streaming multimedia
 - Online games
Transmission Control Protocol (TCP)

- Connection oriented
- Message split into datagrams
- Send datagrams as packets on network layer
- Provides illusion of reliable connection
 - Extra messages between sender / recipient
 - Resend packets if necessary
 - Ensure all packets eventually arrive
 - Store packets and process in order

Transmission Control Protocol (TCP)

- Reliable but slower
- Application can treat as reliable connection
 - Despite unreliability of underlying IP (network)

Examples
- ftp (file transfer)
- telnet (remote terminal)
- http (web)