Overview

- Big-O notation
- Analysis cases
- Critical section
Big-O Notation

- Represents
 - Upper bound on number of steps in algorithm
 - Intrinsic efficiency of algorithm for large inputs

Formal Definition of Big-O

- Function $f(n)$ is $O(\ g(n)\)$ if
 - For some positive constants M, N_0
 - $M \times g(N_0) \geq f(n)$, for all $n \geq N_0$

- Intuitively
 - For some coefficient M & all data sizes $\geq N_0$
 - $M \times g(n)$ is always greater than $f(n)$
Big-O Examples

5n + 1000 ⇒ O(n)
- Select M = 6, N₀ = 1000
- For n ≥ 1000
 - 6n ≥ 5n+1000 is always true
- Example ⇒ for n = 1000
 - 6000 ≥ 5000 +1000

Big-O Examples

2n² + 10n + 1000 ⇒ O(n²)
- Select M = 4, N₀ = 100
- For n ≥ 100
 - 4n² ≥ 2n² + 10n + 1000 is always true
- Example ⇒ for n = 100
 - 40000 ≥ 20000 + 1000 + 1000
Types of Case Analysis

- Can analyze different types (cases) of algorithm behavior
- Types of analysis
 - Best case
 - Worst case
 - Average case

Types of Case Analysis

- Best case
 - Smallest number of steps required
 - Not very useful
 - Example: Find item in first place checked
Types of Case Analysis

- **Worst case**
 - Largest number of steps required
 - Useful for upper bound on worst performance
 - Real-time applications (e.g., multimedia)
 - Quality of service guarantee
 - Example ⇒ Find item in last place checked

Types of Case Analysis

- **Average case**
 - Number of steps required for “typical” case
 - Most useful metric in practice
 - Different approaches
 1. Average case
 2. Expected case
 3. Amortized
Approaches to Average Case

1. Average case
 - Average over all possible inputs
 - Assumes uniform probability distribution

2. Expected case
 - Weighted average over all inputs
 - Weighted by likelihood of input

3. Amortized
 - Examine common sequence of operations
 - Average number of steps over sequence

Quicksort Example

- Quicksort
 - One of the fastest comparison sorts
 - Frequently used in practice

- Quicksort algorithm
 - Pick pivot value from list
 - Partition list into values smaller & bigger than pivot
 - Recursively sort both lists
Quicksort Example

- Quicksort properties
 - Average case = $O(n\log(n))$
 - Worst case = $O(n^2)$
 - Pivot ≈ smallest / largest value in list
 - Picking from front of nearly sorted list
- Can avoid worst-case behavior
 - Attempt to select random pivot value

Amortization Example

- Adding numbers to end of array of size k
 - If array is full, allocate new array
 - Allocation cost is $O($size of new array$)$
 - Copy over contents of existing array
- Two approaches
 - Non-amortized
 - If array is full, allocate new array of size $k+1$
 - Amortized
 - If array is full, allocate new array of size $2k$
 - Compare their allocation cost
Amortization Example

- **Non-amortized approach**
 - Allocation cost as table grows from 1..n
 - Total cost \(\Rightarrow \frac{1}{2} (n+1)^2 \)
 - Case analysis
 - Best case \(\Rightarrow \) allocation cost = k
 - Worse case \(\Rightarrow \) allocation cost = k
 - Average case \(\Rightarrow \) allocation cost = k = n/2

- **Amortized approach**
 - Allocation cost as table grows from 1..n
 - Total cost \(\Rightarrow 2(n-1) \)
 - Case analysis
 - Best case \(\Rightarrow \) allocation cost = 0
 - Worse case \(\Rightarrow \) allocation cost = 2(k – 1)
 - Average case \(\Rightarrow \) allocation cost = 2
 - Worse case takes more steps, but faster overall
Analyzing Algorithms

Goal
- Find asymptotic complexity of algorithm

Approach
- Ignore less frequently executed parts of algorithm
- Find critical section of algorithm
- Determine how many times critical section is executed as function of problem size

Critical Section of Algorithm

Heart of algorithm
- Dominates overall execution time

Characteristics
- Operation central to functioning of program
- Contained inside deeply nested loops
- Executed as often as any other part of algorithm

Sources
- Loops
- Recursion
Critical Section Example 1

- Code (for input size n)
 1. A
 2. for (int $i = 0; i < n; i++$)
 3. B
 4. C

- Code execution
 - A \Rightarrow
 - B \Rightarrow
 - C \Rightarrow

- Time \Rightarrow

Critical Section Example 1

- Code (for input size n)
 1. A
 2. for (int $i = 0; i < n; i++$)
 3. B
 4. C

- Code execution
 - A \Rightarrow once
 - B \Rightarrow n times
 - C \Rightarrow once

- Time $\Rightarrow 1 + n + 1 = O(n)$
Critical Section Example 2

Code (for input size n)
1. A
2. for (int i = 0; i < n; i++)
3. B
4. for (int j = 0; j < n; j++)
5. C
6. D

Code execution
- A ⇒
- B ⇒
- C ⇒
- D ⇒

Time ⇒

Critical Section Example 2

Code (for input size n)
1. A
2. for (int i = 0; i < n; i++)
3. B
4. for (int j = 0; j < n; j++)
5. C
6. D

Code execution
- A ⇒ once
- B ⇒ n times
- C ⇒ n^2 times
- D ⇒ once

Time ⇒ 1 + n + n^2 + 1 = O(n^2)
Critical Section Example 3

Code (for input size n)

1. A
2. for (int i = 0; i < n; i++)
3. for (int j = i+1; j < n; j++)
4. B

Code execution

A ⇒
B ⇒
Time ⇒

Time ⇒ 1 + ½ n² = O(n²)
Critical Section Example 4

Code (for input size n)
1. A
2. for (int i = 0; i < n; i++)
3. for (int j = 0; j < 10000; j++)
4. B

Code execution
- A ⇒
- B ⇒
- Time ⇒

Time ⇒ 1 + 10000 n = O(n)
Critical Section Example 5

Code (for input size \(n \))
1. for (int \(i \) = 0; \(i < n \); \(i++ \))
2. for (int \(j \) = 0; \(j < n \); \(j++ \))
3. A
4. for (int \(i \) = 0; \(i < n \); \(i++ \))
5. for (int \(j \) = 0; \(j < n \); \(j++ \))
6. B

Code execution
- \(A \Rightarrow \)
- \(B \Rightarrow \)
- Time \(\Rightarrow \)

Critical Section Example 5

Code (for input size \(n \))
1. for (int \(i \) = 0; \(i < n \); \(i++ \))
2. for (int \(j \) = 0; \(j < n \); \(j++ \))
3. A
4. for (int \(i \) = 0; \(i < n \); \(i++ \))
5. for (int \(j \) = 0; \(j < n \); \(j++ \))
6. B

Code execution
- \(A \Rightarrow n^2 \) times
- \(B \Rightarrow n^2 \) times
- Time \(\Rightarrow n^2 + n^2 = O(n^2) \)
Critical Section Example 6

Code (for input size n)
1. \(i = 1 \)
2. \(\text{while} \ (i < n) \)
3. \(A \)
4. \(i = 2 \times i \)
5. \(B \)

Code execution
- \(A \rightarrow \)
- \(B \rightarrow \)
- \(\text{Time} \rightarrow \)

\[\text{Time} \rightarrow \log(n) + 1 = O(\log(n)) \]
Critical Section Example 7

- **Code (for input size n)**
 1. DoWork (int n)
 2. if (n == 1)
 3. A
 4. else
 5. DoWork(n/2)
 6. DoWork(n/2)

- **Code execution**
 - A ➞
 - DoWork(n/2) ➞
 - Time(1) ➞ Time(n) =

Critical Section Example 7

- **Code (for input size n)**
 1. DoWork (int n)
 2. if (n == 1)
 3. A
 4. else
 5. DoWork(n/2)
 6. DoWork(n/2)

- **Code execution**
 - A ➞ 1 times
 - DoWork(n/2) ➞ 2 times
 - Time(1) ➞ 1 Time(n) = 2 × Time(n/2) + 1