Advanced Tree Data Structures

Fawzi Emad
Chau-Wen Tseng

Department of Computer Science
University of Maryland, College Park

Overview

- Binary trees
 - Traversal order
 - Balance
 - Rotation
- Multi-way trees
 - Search
 - Insert
Tree Traversal

- **Goal**
 - Visit every node in binary tree

- **Approaches**
 - **Depth first**
 - **Preorder** ⇒ parent before children
 - **Inorder** ⇒ left child, parent, right child
 - **Postorder** ⇒ children before parent
 - **Breadth first** ⇒ closer nodes first

Tree Traversal Methods

- **Pre-order**
 1. Visit node // first
 2. Recursively visit left subtree
 3. Recursively visit right subtree

- **In-order**
 1. Recursively visit left subtree
 2. Visit node // second
 3. Recursively right subtree

- **Post-order**
 1. Recursively visit left subtree
 2. Recursively visit right subtree
 3. Visit node // last
Tree Traversal Methods

- **Breadth-first**

 BFS(Node n) {
 Queue Q = new Queue();
 Q.enqueue(n); // insert node into Q
 while (!Q.empty()) {
 n = Q.dequeue(); // remove next node
 if (!n.isEmpty()) {
 visit(n); // visit node
 Q.enqueue(n.Left()); // insert left subtree in Q
 Q.enqueue(n.Right()); // insert right subtree in Q
 }
 }
 }

Tree Traversal Examples

- **Pre-order (prefix)**
 - $+ \times 2 3 / 8 4$

- **In-order (infix)**
 - $2 \times 3 + 8 / 4$

- **Post-order (postfix)**
 - $2 3 \times 8 4 / +$

- **Breadth-first**
 - $+ \times / 2 3 8 4$

Expression tree
Tree Traversal Examples

- **Pre-order**
 - 44, 17, 32, 78, 50, 48, 62, 88

- **In-order**
 - 17, 32, 44, 48, 50, 62, 78, 88

- **Post-order**
 - 32, 17, 48, 62, 50, 88, 78, 44

- **Breadth-first**
 - 44, 17, 78, 32, 50, 88, 48, 62

Tree Balance

- **Degenerate**
 - Worst case
 - Search in O(n) time

- **Balanced**
 - Average case
 - Search in O(log(n)) time

Binary search tree
Tree Balance

Question
- Can we keep tree (mostly) balanced?

Self-balancing binary search trees
- AVL trees
- Red-black trees

Approach
- Select invariant (that keeps tree balanced)
- Fix tree after each insertion / deletion
 - Maintain invariant using rotations
- Provides operations with $O(\log(n))$ worst case

AVL Trees

Properties
- Binary search tree
- Heights of children for node differ by at most 1

Example

```
  44
 /   \
32    78
 /   /   \
17  50  88
      /   /
     48  62
```

Heights of children shown in red
AVL Trees

- **History**
 - Discovered in 1962 by two Russian mathematicians, Adelson-Velskii & Landis

- **Algorithm**
 1. Find / insert / delete as a binary search tree
 2. After each insertion / deletion
 a) If height of children differ by more than 1
 b) Rotate children until subtrees are balanced
 c) Repeat check for parent (until root reached)

Red-black Trees

- **Properties**
 - Binary search tree
 - Every node is red or black
 - The root is black
 - Every leaf is black
 - All children of red nodes are black
 - For each leaf, same # of black nodes on path to root

- **Characteristics**
 - Properties ensures no leaf is twice as far from root as another leaf
Red-black Trees

Example

History
- Discovered in 1972 by Rudolf Bayer

Algorithm
- Insert / delete may require complicated bookkeeping & rotations

Java collections
- TreeMap, TreeSet use red-black trees
Tree Rotations

- Changes shape of tree
 - Move nodes
 - Change edges

Types
- Single rotation
 - Left
 - Right
- Double rotation
 - Left-right
 - Right-left

Tree Rotation Example

- Single right rotation

[Diagram showing a tree rotation example]
Tree Rotation Example

- Single right rotation

Node 4 attached to new parent

Example – Single Rotations
Example – Double Rotations

Multi-way Search Trees

- **Properties**
 - Generalization of binary search tree
 - Node contains 1…k keys (in sorted order)
 - Node contains 2…k+1 children
 - Keys in jth child < jth key < keys in (j+1)th child

- **Examples**
Types of Multi-way Search Trees

- **2-3 tree**
 - Internal nodes have 2 or 3 children

- **Index search trie**
 - Internal nodes have up to 26 children (for strings)

- **B-tree**
 - $T = \text{minimum degree}$
 - Non-root internal nodes have $T-1$ to $2T-1$ children
 - All leaves have same depth

Multi-way Search Trees

- **Search algorithm**
 1. Compare key x to 1...k keys in node
 2. If $x = \text{some key}$ then return node
 3. Else if ($x < \text{key } j$) search child j
 4. Else if ($x > \text{all keys}$) search child $k+1$

- **Example**
 - Search(17)
Multi-way Search Trees

Insert algorithm
1. Search key \(x \) to find node \(n \)
2. If \((n \text{ not full}) \) insert \(x \) in \(n \)
3. Else if \((n \text{ is full}) \)
 a) Split \(n \) into two nodes
 b) Move middle key from \(n \) to \(n \)'s parent
 c) Insert \(x \) in \(n \)
 d) Recursively split \(n \)'s parent(s) if necessary

Multi-way Search Trees

Insert Example (for 2-3 tree)

Insert(4)

\[
\begin{array}{c}
5 & 12 \\
2 & 8 & 17 \\
\end{array}
\quad \rightarrow \quad
\begin{array}{c}
5 & 12 \\
2 & 4 & 8 & 17 \\
\end{array}
\]
Multi-way Search Trees

Insert Example (for 2-3 tree)
- Insert(1)

B-Trees

Characteristics
- Height of tree is $O(\log_T(n))$
- Reduces number of nodes accessed
- Wasted space for non-full nodes

Popular for large databases
- 1 node = 1 disk block
- Reduces number of disk blocks read