1 Goals of this course

The primary goal of this course is to prepare you to collaborate with networking researchers. This means being able to have an intelligent conversation with networking researchers when you interview, being able to read and comment on papers written by your friends in networking and systems, and having an eye for networking research problems that appear in your own work.

Students already involved in networks and systems research should take extra care to understand not only how the topics covered in this course relate to their area of interest, but also to master the style of writing good systems research papers. That is, while I expect all students to comprehend the insight and contribution of the papers we read in this class, I expect systems students to pay particular attention to the evaluation methods, the organization of the papers, and how to mimic both.

2 My philosophy of a systems course

I do not believe in wasted work. I have chosen short papers where longer ones are unnecessary. The course projects will be (for the most part) original research that can, with sufficient effort and a little luck, produce in publication-quality research. My role in this course is to facilitate your learning: I will not presume to “teach” you anything. You will learn most by reading, thinking, listening to your peers, and doing.

3 Background Reading

If you find yourself unfamiliar with the vocabulary of the course, have not yet taken an undergraduate networking class, or would like to make sure you understand the concepts in a textbook-like presentation, I recommend:

- W. Richard Stevens. TCP/IP Illustrated Volume 1.
These are recommended, but not required (I will assign no readings and no exercises from these books). It would be reasonable to share a copy with a friend or borrow an older edition. Stevens’s book is a true classic; I refer to it from time to time. Peterson’s book covers many things in less detail, but is easy to read. Other books include:

- Jim Kurose and Keith Ross. Computer Networks: A Top-Down Approach Featuring the Internet
- Srinivasan Keshav. An Engineering Approach to Computer Networks.

These are good textbooks that may be adequate if you already have a copy. Tanenbaum’s book is packed with information; there’s plenty in there that I don’t know. Kurose’s book is new enough that I haven’t spent much time with it. Keshav’s book is great and has balance between IP and telephone-style networks: balance that this course will not have (so much of the content is not needed).

4 Grading

The grading of this course will be based on the following criteria. In this section, I present both the approximate percentage breakdown and a description of the criteria.

4.1 Class participation (10%)

I intend to conduct class time mostly in discussion. Being part of the academic community means making well-reasoned arguments about a paper’s quality or lack thereof: it helps you get papers you like accepted by program committees and helps you to gain standing by asking insightful questions at workshops and conferences.

I am, however, concerned about encouraging a supportive atmosphere for class discussion. Interruption (often tolerated by groups outside the classroom) and monopolizing a discussion (by restating the same point several times), will count against you. Please talk to me if you’re unsure of what I mean or feel intimidated in class.

4.2 Reading-related exercises (20%)

In my experience, students don’t read papers unless there is some graded exercise involved.

The easiest, and often the most valuable, assignment is the “review”: to pretend that you are on a program committee and are evaluating the paper for publication. I will assign this exercise for controversial, new papers that I include more for their novelty than as background. A review should be no more than 500 words, list the primary contribution, three main strengths, and three main weaknesses, followed by a summary. Drawing relationships to other papers is encouraged.

For most background papers, I will assign a few short-answer questions that are to be done individually before class or in-class. No late work will be accepted. Early work is encouraged. The lack of a review or sheet of take-home questions is a warning to expect in-class questions.

4.3 Course project (40%)

The course project will be a group research project. Teams of three or four (two or five in exceptional situations – scheduling difficulties or extraordinary ambition) will work together on a research project. Details and project ideas will follow in another handout. The course project grade will consist of, in roughly equal measure: milestones, an oral presentation, and a written report. Milestones will include a one-page proposal describing the project and the expected contribution of each team member, a mid-semester progress report with initial results, a draft paper, and draft talk slides. I may not have time to review each submitted milestone; I may have to focus on those groups that struggle or those that ask for help. Milestone deadlines will usually fall on Fridays.

Ideally, each group will have members with different skills who can teach each other. Unfortunately for me, I don’t know how to encourage group members to teach each other through grading. I expect students will help each other.
with CVS, \LaTeX, a little writing, a little hacking, and a little theory. If your group is loaded with people having the same narrow skills, change: you will learn more.

4.4 Midterm exam (10%); Final exam (20%)

There will be a take-home midterm and final. In both, I will be looking for creativity and synthesis, not recall. The midterm exam exists primarily to give you a chance to see the type of questions I ask before the final.

5 Lateness

All assignments can be turned in electronically. I will permit one project milestone to be turned in after the weekend (when due Friday, it can be turned in on Monday). Because the reading exercises are intended to encourage class participation, there is no point to doing them late, and late turnins (after class starts) will not be accepted. I do not make a habit of extending deadlines, and because there is no shared course infrastructure to break and little dependence between deadlines and course content, it is unlikely that any deadlines will slip.

There are exceptions for excused absences defined by the university. If you’re sick, get a note. If you need accommodation for disability, illness, family emergency, etc., ask me early.

6 Collaboration

Reading assignments are to be done individually. Exams are to be done individually. Individually means without collaboration with other students, without asking questions of outsiders, on mailing lists, of senior graduate students, etc. If in doubt, talk to me.

Course projects are to be done in teams; while I do not expect all group members to be present for all work, I do expect each group member to know what the others are up to. If you split up the work too coarsely (one person writes the report, another gives the presentation, and another does the work), I will be disappointed. You are welcome to solicit the advice of senior grad students, faculty, friends, family, pets, psychics, and whomever else might help you in your quest. I will get grouchy if I see that you’ve sent a FAQ to a mailing list, so be careful when you represent UMD publicly.

7 Priorities

It’s up to you to decide what’s important: why you take this course, what you hope to gain, and where you want to be in a few years. If the course is not meeting your expectations or satisfying your goals, talk to me.

8 Course timeline

The schedule of lectures, exams, and deadlines is available at:

ical: webcal://ical.mac.com/neil.spring/CMSC32711.ics
browser: http://ical.mac.com/neil.spring/CMSC32711

This is an experiment; if using iCal doesn’t work well, I may switch to something else. If you don’t have a mac, use Mozilla Sunbird even though this codebase has a long tradition of being buggy when showing repeating events.

9 Notes for me

Course schedule