Presentation on
MULTIDIMENSIONAL LINEAR HASHING

by
B Brent Gordon
MULTIDIMENSIONAL LINEAR HASHING

- Introduction & basic principles
- Linear Hashing with Reversed Bit Interleaving (LHRBI)
- Multidimensional Extendible Hashing (MDEH)
- Comparison of LHRBI and MDEH
- Quantile Hashing
- Piecewise Linear Order Preserving (PLOP)
- Dynamic Z Hashing
- Linear Hashing with Partial Expansions (LHPE)
Introduction, some basic principles

- Linear Hashing with Reversed Bit Interleaving (LHRBI)
- Multidimensional Extendible Hashing (MDEH)
- Comparison of LHRBI and MDEH
- Quantile Hashing
- Piecewise Linear Order Preserving (PLOP)
- Dynamic Z Hashing
- Linear Hashing with Partial Expansions (LHPE)
Linear Hashing in general:
Create one additional cell at a time
May be based on
Overflow of bucket or cell, or
Storage Utilization Factor

Linear Hashing in dimension \(d > 1 \)
\(d \)-dimensional hypervolume is subdivided into
\(d \)-dimensional cells
Cells are linearly ordered, typically in order of creation
The **hashing function** must map points in
\(d\)-space to a unique cell/bucket number.

\(d\)-dimensional hypercube

Buckets
Total grid partition: number of cells is doubled

(But cells have same shape as original only every dth total grid partition (tgp).

Example $d = 2$.

Number of cells = 1
Total grid partition 0
Cell is square
Total grid partition: number of cells is doubled
(But cells have same shape as original only every dth total grid partition (tgp).

Example $d = 2$.

Number of cells = 2
Total grid partition 1
Cells are not square
Total grid partition: number of cells is doubled
(But cells have same shape as original only every dth total grid partition (tgp).
Example $d = 2$.

Number of cells = 4
Total grid partition 2
Cells are square
Total grid partition: number of cells is doubled

(But cells have same shape as original only every dth total grid partition (tgp).

Example $d = 2$.

Number of cells = 8
Total grid partition 3
Cells are not square
Total grid partition: number of cells is doubled

(But cells have same shape as original only every \(d\)th total grid partition (tgp).

Example \(d = 2\).

Number of cells = 16
Total grid partition 4
Cells are square
Bit Operations

Bit Concatonation: \((4, 3)_{10} = (100, 011)_2\)

\[\downarrow \quad \downarrow\]

\((100011)_2 = (35)_{10}\)

\(y\)-first Bit Interleaving: \((4, 3)_{10} = (100, 011)_2\)

\[\downarrow \quad \downarrow\]

\((011010)_2 = (26)_{10}\)

\(y\)-first Reversed Bit Interleaving: \((4, 3)_{10} = (100, 011)_2\)

\[\downarrow \quad \downarrow\]

\((010110)_2 = (22)_{10}\)

(reverse the previous one)
Outline

Introduction, some basic principles

Linear Hashing with Reversed Bit Interleaving (LHRBI)

Multidimensional Extendible Hashing (MDEH)

Comparison of LHRBI and MDEH

Quantile Hashing

Piecewise Linear Order Preserving (PLOP)

Dynamic Z Hashing

Linear Hashing with Partial Expansions (LHPE)
MAIN POINTS:

Decouple cell overflow from cell split by having chosen the order of splitting in advance.

Order preserving.
The Specifics:
1. Embedding space-based
2. Always split next smallest-numbered cell.
3. y-first reversed bit interleaving on partition indices
4. Count partition indices by distance from origin
Key Points:
1. **Order preserving**, i.e., always split next smallest-numbered cell.
2. **y-first reversed bit interleaving** on partition indices
3. Count partition indices by distance from origin

Split cell 0
LHRBI

Key Points:
1. **Order preserving**, i.e., always split next smallest-numbered cell.
2. **y-first reversed bit interleaving** on partition indices
3. Count partition indices by distance from origin

Split cell 0
LHRBI

Key Points:
1. **Order preserving**, i.e., always split next smallest-numbered cell.

2. **y-first reversed bit interleaving** on partition indices

3. Count partition indices by distance from origin

Split cell 1

Finish total grid partition 2
LHRBI

Key Points:
1. **Order preserving**, i.e., always split next smallest-numbered cell.
2. **y-first reversed bit interleaving** on partition indices
3. Count partition indices by distance from origin

Notice: Split cell 0
Key Points:
1. **Order preserving**, i.e., always split next smallest-numbered cell.
2. **y-first reversed bit interleaving** on partition indices
3. Count partition indices by distance from origin

![Diagram of cell splitting]

Split cell 1

Notice
Key Points:
1. **Order preserving**, i.e., always split next smallest-numbered cell.
2. **y-first reversed bit interleaving** on partition indices
3. Count partition indices by distance from origin

Split cell 2
LHRBI

Key Points:
1. **Order preserving**, i.e., always split next smallest-numbered cell.
2. y-first reversed bit interleaving on partition indices
3. Count partition indices by distance from origin

Split cell 3

Finish total grid partition 3
Key Points:

1. **Order preserving**, i.e., always split next smallest-numbered cell.

2. **y-first reversed bit interleaving** on partition indices

3. Count partition indices by distance from origin
Key Points:

1. **Order preserving**, i.e., always split next smallest-numbered cell.

2. **y-first reversed bit interleaving** on partition indices

3. Count partition indices by distance from origin

Split cell 1
Key Points:
1. **Order preserving**, i.e., always split next smallest-numbered cell.
2. **y-first reversed bit interleaving** on partition indices
3. Count partition indices by distance from origin

Split cell 2
Key Points:

1. **Order preserving**, i.e., always split next smallest-numbered cell.

2. **y-first reversed bit interleaving** on partition indices

3. Count partition indices by distance from origin

Split cell 3
LHRBI

Key Points:

1. **Order preserving**, i.e., always split next smallest-numbered cell.

2. **y-first reversed bit interleaving** on partition indices

3. Count partition indices by distance from origin
LHRBI

Key Points:
1. Order preserving, i.e., always split next smallest-numbered cell.
2. y-first reversed bit interleaving on partition indices
3. Count partition indices by distance from origin

Split cell 5
Key Points:
1. **Order preserving**, i.e., always split next smallest-numbered cell.
2. *y*-first reversed bit interleaving on partition indices
3. Count partition indices by distance from origin

Split cell 6
Key Points:
1. **Order preserving**, i.e., always split next smallest-numbered cell.
2. **y-first reversed bit interleaving** on partition indices
3. Count partition indices by distance from origin

Split cell 7

Total grid partition 4
LHRBI

Key Points:
1. **Order preserving**, i.e., always split next smallest-numbered cell.
2. **y-first reversed bit interleaving** on partition indices
3. Count partition indices by distance from origin

In what cell does (0.8, 0.7) lie?
- x-partition index = $(3)_{10} = (11)_2$
- y-partition index = $(2)_{10} = (10)_2$
- Reverse bit interleave $= (1011)_2 = (11)_{10}$
Outline

Introduction, some basic principles
Linear Hashing with Reversed Bit Interleaving (LHRBI)
Multidimensional Extendible Hashing (MDEH)
Comparison of LHRBI and MDEH
Quantile Hashing
Piecewise Linear Order Preserving (PLOP)
Dynamic Z Hashing
Linear Hashing with Partial Expansions (LHPE)
Multidimensional Extendible Hashing (MDEH)

MAIN POINTS:

Variant of Linear Hashing

Split a slice completely before any cell in another slice.
Multidimensional Extendible Hashing (MDEH)

Properties:
1. Linear hashing, split one cell at a time.
2. Complete one slice before starting the next.
3. Complete splitting along an axis before starting next.
5. Embedding space based decomposition.
7. Partition Indices don’t change from order of creation.
8. Use Linear Scales (tries) to track partition indices.
9. An Expansion Index points to next cell to be split.
Expansion index \((e_y, e_x) = (0, 0)\)

Next to be split is cell 0.

Linear scale on \(y\)-axis

Linear scale on \(x\)-axis
Expansion index \((e_y, e_x) = (0, 0)\)

Next to be split is cell 0.
Expansion index \((e_y, e_x) = (1, 0)\)

Next to be split is cell 1.

Linear scale on y-axis

Linear scale on x-axis
Expansion index \((e_y, e_x) = (0, 0)\)
Next to be split is cell 0.
Expansion index \((e_y, e_x) = (0, 1)\)
Next to be split is cell 2.
Expansion index \((e_y, e_x) = (1,0)\)

Next to be split is cell 1.
Expansion index \((e_y, e_x) = (01, 1)\)

Next to be split is cell 3.
Expansion index \((e_y, e_x) = (01,0)\)

Next to be split is cell 1.
Expansion index \((e_y, e_x) = (10,0)\)

Next to be split is cell 4.
Expansion index \((e_y, e_x) = (11, 0)\)

Next to be split is cell 6.
Expansion index \((e_y, e_x) = (00,1)\)
Next to be split is cell 2.
Expansion index \((e_y, e_x) = (01, 1)\)

Next to be split is cell 3.
Expansion index \((e_y, e_x) = (10, 1)\)

Next to be split is cell 5.
Expansion index \((e_y, e_x) = (11, 1)\)

Next to be split is cell 7.

Linear scale on \(y\)-axis

Linear scale on \(x\)-axis
Expansion index \((e_y, e_x) = (00, 00)\)
Next to be split is cell 0.
In what cell is (0.8, 0.7) located?

Linear scales lead to

- x-partition index = $(3)_{10} = (11)_2$
- y-partition index = $1 = (01)_2$

Concatenate: $(1101)_2 = (13)_{10}$
Outline

Introduction, some basic principles
Linear Hashing with Reversed Bit Interleaving (LHRBI)
Multidimensional Extendible Hashing (MDEH)

Comparison of LHRBI and MDEH

Quantile Hashing

Piecewise Linear Order Preserving (PLOP)

Dynamic Z Hashing

Linear Hashing with Partial Expansions (LHPE)
LHRBI vs. MDEH

Key Point:

Differences due to choice of how to order cells/splittings.
LHRBI vs. MDEH

LHRB

I

MDE

H
LHRBI vs. MDEH

LHRB
1

MDE
H

1

2

3

0

1

0

1

0

1

0
LHRBI vs. MDEH

LHRB
I

MDE
H
LHRBI vs. MDEH

LHRB

MDEH
LHRBI vs. MDEH

LHRB

MDE

LHRBI vs. MDEH

LHRB

MDE

0

0

0

3

2

1

0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9
LHRBI vs. MDEH

LHRB
 I

MDE
 H
LHRBI vs. MDEH

LHRB
I

MDE
H
LHRBI vs. MDEH

LHRB
I

MDE
H
Outline

Introduction, some basic principles
Linear Hashing with Reversed Bit Interleaving (LHRBI)
Multidimensional Extendible Hashing (MDEH)
Comparison of LHRBI and MDEH
Quantile Hashing
Piecewise Linear Order Preserving (PLOP)
Dynamic Z Hashing
Linear Hashing with Partial Expansions (LHPE)
MAIN POINTS.

Adaptive Variant of MDEH

Each Slice-Cut Divides Data in Half
Quantile Hashing

The Specifics.

1. Splits and slices in same relative position and order.

2. Instead of midpoint, cut at estimated data median.

3. Cuts’ locations in non-leaf nodes of linear scale.

4. Data based decomposition.
Quantile Hashing

Expansion index \((e_y, e_x) = (00, 00)\)

Next to be split is cell 0.
Introduction, some basic principles
Linear Hashing with Reversed Bit Interleaving (LHRBI)
Multidimensional Extendible Hashing (MDEH)
Comparison of LHRBI and MDEH
Quantile Hashing

Piecewise Linear Order Preserving (PLOP)

Dynamic Z Hashing

Linear Hashing with Partial Expansions (LHPE)
Main Points.

Adaptive Generalization of Quantile Hashing hence of MDEH.

May Split the Same Slice More than Once During a Cycle
Piecewise Linear Order Preserving Hashing

1. Data based decomposition.
2. Generalization of Quantile Hashing, more adaptive
3. Cycle through axes.
4. Each axis-cycle doubles number of cells.
5. Finish a slices before starting another (like MDEH).
6. Otherwise, slice-cuts are allowed anywhere.
Linear scale on y-axis

Linear scale on x-axis
Linear scale on y-axis

Linear scale on x-axis
Linear scale on y-axis

0.75

0.3

0.2

0

1

2

3

6 15 7 11

4 14 5 10

0 12 2 8

0 3 1 2

Linear scale on x-axis

0.2

0.35

0.85

0.2

0.35

0.85
In what cell is $(0.8, 0.7)$ located?

Linear scales lead to

x-partition index $= (1)_2 = (01)_2$

y-partition index $= (3)_2 = (11)_2$

Concatonate: $(0111)_2 = (7)_{10}$
Outline

Introduction, some basic principles
Linear Hashing with Reversed Bit Interleaving (LHRBI)
Multidimensional Extendible Hashing (MDEH)
Comparison of LHRBI and MDEH
Quantile Hashing
Piecewise Linear Order Preserving (PLOP)

Dynamic Z Hashing

Linear Hashing with Partial Expansions (LHPE)
Dynamic Z Hashing

MAIN POINTS.

Spatially Nearby Cells have Sequentially Nearby Numbers/Addresses.

Each Round (2-power number of cells) is Order-Preserving.
Dynamic Z Hashing

1. Embedding space-based decomposition.
2. Better than LHRBI or MDEH at keeping spacially close cells sequentially close.
3. Splitting process creates gaps.
4. Hence lower storage utilization factor.
5. With $4t$ cells currently, split cell $2t$ then $2t+1$, then cell t.
Dynamic Z

To start $t = 0$, so we split $2t = 0$,
Dynamic Z

To start $t = 0$, so we split $2t = 0$, then $2t + 1 = 1$, and renumber.
To start $t = 0$, so we split $2t = 0$, then $2t+1 = 1$, and renumber. Next split t, and return unused number 1 to use.
To start $t = 0$, so we split $2^t = 0$, then $2^{t+1} = 1$, and renumber. Next split t, and return unused number 1 to use.

Now $t = 1$, so we split $2^t = 2$ first, and renumber.
To start $t = 0$, so we split $2t = 0$, then $2t+1 = 1$, and renumber. Next split t, and return unused number 1 to use.

Now $t = 1$, so we split $2t = 2$ first, and renumber. Then split $2t+1 = 3$ and renumber.
To start $t = 0$, so we split $2t = 0$, then $2t+1 = 1$, and renumber. Next split t, and return unused number 1 to use.

Now $t = 1$, so we split $2t = 2$ first, and renumber. Then split $2t+1 = 3$ and renumber. Next split cell $t = 1$
To start $t = 0$, so we split $2t = 0$, then $2t+1 = 1$, and renumber. Next split t, and return unused number 1 to use.

Now $t = 1$, so we split $2t = 2$ first, and renumber. Then split $2t+1 = 3$ and renumber. Next split cell $t = 1$, and finally cell 0.
Dynamic Z

To start $t = 0$, so we split $2t = 0$, then $2t+1=1$, and renumber. Next split t, and return unused number 1 to use.

Now $t = 1$, so we split $2t = 2$ first, and renumber. Then split $2t+1 = 3$ and renumber. Next split cell $t = 1$, and finally cell 0.

Next $t = 2$, so we split cell $2t = 4$.
To start $t = 0$, so we split $2t = 0$, then $2t+1=1$, and renumber. Next split t, and return unused number 1 to use.

Now $t = 1$, so we split $2t = 2$ first, and renumber. Then split $2t+1 = 3$ and renumber. Next split cell $t = 1$, and finally cell 0.

Next $t = 2$, so we split cell $2t = 4$. Then $2t+1 = 5$.
Dynamic Z

To start $t = 0$, so we split $2t = 0$, then $2t+1=1$, and renumber. Next split t, and return unused number 1 to use.

Now $t = 1$, so we split $2t = 2$ first, and renumber. Then split $2t+1 = 3$ and renumber. Next split cell $t = 1$, and finally cell 0.

Next $t = 2$, so we split cell $2t = 4$. Then $2t+1 = 5$. Then $t = 2$.
To start $t = 0$, so we split $2t = 0$, then $2t+1=1$, and renumber. Next split t, and return unused number 1 to use.

Now $t = 1$, so we split $2t = 2$ first, and renumber. Then split $2t+1 = 3$ and renumber. Next split cell $t = 1$, and finally cell 0.

Next $t = 2$, so we split cell $2t = 4$. Then $2t+1 = 5$. Then $t = 2$. Cell 6 is split next.
To start $t = 0$, so we split $2t = 0$, then $2t+1=1$, and renumber. Next split t, and return unused number 1 to use.

Now $t = 1$, so we split $2t = 2$ first, and renumber. Then split $2t+1 = 3$ and renumber. Next split cell $t = 1$, and finally cell 0.

Next $t = 2$, so we split cell $2t = 4$. Then $2t+1 = 5$. Then $t = 2$. Cell 6 is split next, then cell 7.
To start $t = 0$, so we split
$2t = 0$, then $2t+1=1$, and
renumber. Next split t, and
return unused number 1 to
use.

Now $t = 1$, so we split $2t = 2$
first, and renumber. Then
split $2t+1 = 3$ and renumber.
Next split cell $t = 1$, and
finally cell 0.

Next $t = 2$, so we split cell
$2t = 4$. Then $2t+1 = 5$. Then
t = 2. Cell 6 is split next,
then cell 7. Now 3 can be
split.
To start $t = 0$, so we split $2t = 0$, then $2t+1 = 1$, and renumber. Next split t, and return unused number 1 to use.

Now $t = 1$, so we split $2t = 2$ first, and renumber. Then split $2t+1 = 3$ and renumber. Next split cell $t = 1$, and finally cell 0.

Next $t = 2$, so we split cell $2t = 4$. Then $2t+1 = 5$. Then $t = 2$. Cell 6 is split next, then cell 7. Now 3 can be split, then 1.
To start $t = 0$, so we split $2t = 0$, then $2t+1 = 1$, and renumber. Next split t, and return unused number 1 to use.

Now $t = 1$, so we split $2t = 2$ first, and renumber. Then split $2t+1 = 3$ and renumber. Next split cell $t = 1$, and finally cell 0.

Next $t = 2$, so we split cell $2t = 4$. Then $2t+1 = 5$. Then $t = 2$. Cell 6 is split next, then cell 7. Now 3 can be split, then 1, and finally 0.
In what cell is \((0.87, 0.7)\) located?

With partition indices ordered by distance from origin,
- \(x\)-partition index = \((11)\)\(_2\),
- \(y\)-partition index = \((10)\)\(_2\),

\(y\)-first interleaving implies \((1101)\)\(_2\) = \((13)\)\(_{10}\).
Outline

- Introduction, some basic principles
- Linear Hashing with Reversed Bit Interleaving (LHRBI)
- Multidimensional Extendible Hashing (MDEH)
- Comparison of LHRBI and MDEH
- Quantile Hashing
- Piecewise Linear Order Preserving (PLOP)
- Dynamic Z Hashing
- Linear Hashing with Partial Expansions (LHPE)
Linear Hashing with Partial Expansion (LHPE)

MAIN POINTS.

A Variation on Linear Hashing that May Be Used with Any (space-based) Method.

Number of Cells Doubles More Gradually.
LHPE

Linear Hashing with Partial Expansion (LHPE)

The Specifics.
1. Not itself a hashing function.
2. Not so relevant to data-based splitting approaches
3. Used with order-preserving (or other) linear hashing.
4. Doubles in two steps
 a. First split 2 cells into 3.
 b. Then 3 cells into 4.
Example.

Starting with 4
Example.

Split 2 into 3

LHPE
Example.

Split 2 into 3
Example.

Split 3 into 4
Example.

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Split 3 into 4

Notice that 2D decomposition-construction is that of LHRBI

And so forth
SUMMARY

• Linear Hashing—add one cell/bucket at a time
 • Total grid partion
 • Bit operations—concatonation, (reversed) interleaving

• LHRBI Linear Hashing with Reversed Bit Interleaving
 • Embedding space-based decomposition
 • Order preserving
 • Partition indices ordered by distance from origin
 • Hash function—y-first reversed bit interleaving on partion indices
Summary

- Multidimensional Extendible Hashing
 - Embedding space-based decomposition
 - Cycle through axes
 - Complete each slice and each axis before going to next
 - Partition indices numbered in order of creation, and tracked using linear scales
 - Expansion Index points to next split
 - Hash function—x-first concatenation on partition indices
Summary

- Quantile Hashing
 - Data-based decomposition
 - Just like MDEH, except
 - Slice-cut location may vary
 - Each slice-cut attempts to divide enclosed data in half
- Piecewise-Linear Order-Preserving Hashing
 - Data-based decomposition
 - Slice location is arbitrary
 - Complete slice and axis before doing next
 - Cycle through axes
 - More adaptive than Quantile Hashing
Summary

• Dynamic Z Hashing
 • Embedding space-based decomposition
 • Spacially close cells are numerically close
 • Splitting process produces gaps, hence lower storage utilization factor
 • Hash function—y-first interleaving

• Linear Hashing with Partial Expansion
 • Use with embedding space decompositions
 • Double in two steps—split 2 into 3, then 3 into 4