Skyline queries and its variations

An Optimal and Progressive Algorithm for Skyline Queries
D.Papadias, Y.Tao, G.Fu, B. Seeger, SIGMOD 2003

Presented by Jagan Sankaranarayanan
Skyline Queries

Definition: Given a set of points \(p_1, p_2, \ldots, p_N \), the skyline query returns a set of points \(P \) (referred to as the skyline points), such that any point \(p_i \in P \) is not dominated by any other point in the dataset.
Skyline Queries

- Definition: Given a set of points \(p_1, p_2, \ldots, p_N \), the skyline query returns a set of points \(P \) (referred to as the skyline points), such that any point \(p_i \in P \) is not dominated by any other point in the dataset.

- Definition of point domination: a point \(p_i \) dominates another point \(p_j \) if and only if the coordinate of \(p_i \) on any axis is not larger than the corresponding coordinate of \(p_j \).

- Informally, larger translates to an preference function that is a monotone on all attributes.
Example

- A dataset containing information about hotels; the distance to the beach and the price for each data point is recorded.

- Consider a two dimensional plot of the dataset, where the distance and price are assigned to the X,Y axis of the plot.

- The goal of the search is to find a hotel whose distance to the beach and the price are both minimum (not restricted to minimum, any other function max, join, group-by clause could be used.)

- The preference function in our example is "minimum price and minimum distance". The dataset may not have one single data point that satisfies both these desirable properties.

- The user is presented with a set of interesting points that partly satisfy the imposed constraints.
Example

- A dataset containing information about hotels; the distance to the beach and the price for each data point is recorded.

- Consider a two dimensional plot of the dataset, where the distance and price are assigned to the X,Y axis of the plot.

- The interesting data-points in the dataset are \(\{a, i, k\} \). \(a \) has the least distance from the beach.
Example

- A dataset containing information about hotels; the *distance* to the beach and the *price* for each data point is recorded.

- Consider a two dimensional plot of the dataset, where the distance and price are assigned to the X,Y axis of the plot.

- The interesting data-points in the dataset are \{a, i, k\}. *a* has the least distance from the beach, *k* has the lowest price.
Example

- A dataset containing information about hotels; the distance to the beach and the price for each data point is recorded.

- Consider a two dimensional plot of the dataset, where the distance and price are assigned to the X,Y axis of the plot.

- The interesting data-points in the dataset are \(\{a, i, k\} \). \(a \) has the least distance from the beach, \(k \) has the lowest price, \(i \) has neither the shortest distance nor the minimum price.
Example

- A dataset containing information about hotels; the distance to the beach and the price for each data point is recorded.

- Consider a two-dimensional plot of the dataset, where the distance and price are assigned to the X,Y axis of the plot.

- The interesting data-points in the dataset are \{a, i, k\}. a has the least distance from the beach, k has the lowest price, i has neither the shortest distance nor the minimum price. i has a lesser distance value than k and a lower price value than a. i is hence not dominated by either one of them.
Example

- A dataset containing information about hotels; the distance to the beach and the price for each data point is recorded.

- Consider a two dimensional plot of the dataset, where the distance and price are assigned to the X,Y axis of the plot.

- The interesting data-points in the dataset are \{a, i, k\}. a has the least distance from the beach, k has the lowest price, i has neither the shortest distance nor the minimum price. i has a lesser distance value than k and a lower price value than a. i is hence not dominated by either one of them.

- All other points in the dataset are dominated by the set of points \{a, i, k\}, i.e., both the distance and price values are greater than one or more skyline points.
Example

- A dataset containing information about hotels; the distance to the beach and the price for each data point is recorded.

- Consider a two dimensional plot of the dataset, where the distance and price are assigned to the X,Y axis of the plot.

- The interesting data-points in the dataset are \(\{a, i, k\} \). \(a \) has the least distance from the beach, \(k \) has the lowest price, \(i \) has neither the shortest distance nor the minimum price. \(i \) has a lesser distance value than \(k \) and a lower price value than \(a \). \(i \) is hence not dominated by either one of them.

- All other points in the dataset are dominated by the set of points \(\{a, i, k\} \), i.e., both the distance and price values are greater than one or more skyline points.
Related algorithm

- convex hulls: contain the subset of skyline queries
- top-K queries: if the preference function is formulated as a cost-minimization function, Top-K queries retrieves skyline points.
- related to multivariate optimization, maximum vectors and contour problems.
Techniques for evaluating skyline queries

- Block Nested Loop
- Divide and Conquer
- Plane-sweep
- Nearest Neighbor Search
- Branch and Bound Skyline
Block Nested Loop [Borzyoni, ICDE-2001]

- scan through a list of points and test each point for dominance criteria.
- active list of potential skyline points seen thus far are maintained, each visited point is compared with all elements in the list. The list is suitably updated.
- method does not require a precomputed index. Execution independent of the dimensionality of the space.
- total work done depends on the order in which points were encountered. Method performs redundant work, no provision for early termination.
Divide-and-Conquer [Borzyoni, ICDE-2001]

Continuously break up large datasets into smaller partitions. Continue till each smaller partition of the dataset is in the main memory. Compute the partial skyline for each partition using any in-memory approach and later combine these partial skyline points to form the final skyline query.
Divide-and-Conquer [Borzyoni, ICDE-2001]

- recursively break up large datasets into smaller partitions. Continue till each smaller partition of the dataset fits in the main memory.
Divide-and-Conquer [Borzyoni, ICDE-2001]

- recursively break up large datasets into smaller partitions. Continue till each smaller partition of the dataset fits in the main memory.

- compute the partial skyline for each partition using any in-memory approach and later combine these partial skyline points to form the final skyline query.
Plane-sweep [Tan, VLDB-2001]

- plane sweep along each of the d dimensions.
- can detect early termination
Plane-sweep [Tan, VLDB-2001]

- plane sweep along each of the d dimensions.
- can detect early termination
Plane-sweep [Tan, VLDB-2001]

- plane sweep along each of the d dimensions.
- can detect early termination
Nearest Neighbor Search [Kossman, VLDB-2002]

- Assumes that a spatial index structure on the data points is available for use.
- Identifies skyline points by repeated application of a nearest neighbor search technique on the data points, using a suitably defined L_1 distance norm.
Nearest Neighbor Search [Kossman, VLDB-2002]

- Assumes that a spatial index structure on the data points is available for use.
- Identifies skyline points by repeated application of a nearest neighbor search technique on the data points, using a suitably defined L_1 distance norm.
- The nearest neighbor in the data-point is i as it is closest to the origin when an L_1 distance measure is assumed.
Nearest Neighbor Search [Kossman, VLDB-2002]

- assumes that a spatial index structure on the data points is available for use.
- identifies skyline points by repeated application of a nearest neighbor search technique on the data points, using a suitably defined L_1 distance norm.
- the nearest neighbor in the data-point is i as it is closest to the origin when an L_1 distance measure is assumed.

i divides the space into 2^d non-disjoint region, which now must now be recursively searched for more skyline points.
Nearest Neighbor Search [Kossman, VLDB-2002]

- assumes that a spatial index structure on the data points is available for use.
- identifies skyline points by repeated application of a nearest neighbor search technique on the data points, using a suitably defined L_1 distance norm.
- the nearest neighbor in the data-point is i as it is closest to the origin when an L_1 distance measure is assumed.

- However, region 4 and 2 need not be searched. The rest of the $2^d - 2$ regions need to be searched.
 - No closer point than i in 2 (by virtue that i is the nearest neighbor to the origin). Any data-point in the space 2 is dominated by i.

Nearest Neighbor Search [Kossman, VLDB-2002]

- Assumes that a spatial index structure on the data points is available for use.
- Identifies skyline points by repeated application of a nearest neighbor search technique on the data points, using a suitably defined L_1 distance norm.
- The nearest neighbor in the data-point is i as it is closest to the origin when an L_1 distance measure is assumed.

However, region 4 and 2 need not be searched. The rest of the $2^d - 2$ regions need to be searched.

- No closer point than i in 2 (by virtue that i is the nearest neighbor to the origin). Any data-point in the space 2 is dominated by i.

- Recursively apply the search on region-1. The nearest neighbor in region-1 would be a, explode region to form additional regions.
Nearest Neighbor Search [Kossman, VLDB-2002]

- assumes that a spatial index structure on the data points is available for use.
- identifies skyline points by repeated application of a nearest neighbor search technique on the data points, using a suitably defined L_1 distance norm.
- the nearest neighbor in the data-point is i as it is closest to the origin when an L_1 distance measure is assumed.

However, region 4 and 2 need not be searched. The rest of the $2^d - 2$ regions need to be searched.

- No closer point than i in 2 (by virtue that i is the nearest neighbor to the origin). Any data-point in the space 2 is dominated by i.
- recursively apply the search on region-1. The nearest neighbor in region-1 would be a, explode region to form additional regions
- region-4 is added to the pruned region and need not be searched
Nearest Neighbor Search [Kossman, VLDB-2002]

- Assumes that a spatial index structure on the data points is available for use.
- Identifies skyline points by repeated application of a nearest neighbor search technique on the data points, using a suitably defined L_1 distance norm.
- The nearest neighbor in the data-point is i as it is closest to the origin when an L_1 distance measure is assumed.

However, region 4 and 2 need not be searched. The rest of the $2^d - 2$ regions need to be searched.

- No closer point than i in 2 (by virtue that i is the nearest neighbor to the origin). Any data-point in the space 2 is dominated by i.
- Recursively apply the search on region-1. The nearest neighbor in region-1 would be a, explode region to form additional regions.
- Region-4 is added to the pruned region and need not be searched.
- The number of unexplored regions grow rapidly - $O(dataset)$. The non-disjoint condition is relaxed for high-dimensional datasets.
Overlapping the search regions

- relax the restriction that regions are non-overlapping. Assume that the point query splits each dimension into two regions; instead of exploding a region to 2^d, it reduces to $2d$.

- we have traded lesser number of regions to search at the expense dealing with duplicate and their removal.

1. Laisser-Faire: maintain an in-memory hash table that keys in each point and assigns it a duplicate if already present in the hash-table.
2. Propagate: when a point is found, remove all instances of it from all unvisited nodes.
3. Merge: merge partitions to form non-overlap regions.
Overlapping the search regions

- relax the restriction that regions are non-overlapping. Assume that the point query splits each dimension into two regions; instead of exploding a region to 2^d, it reduces to $2d$.

- we have traded lesser number of regions to search at the expense dealing with duplicate and their removal.
Overlapping the search regions

- relax the restriction that regions are non-overlapping. Assume that the point query splits each dimension into two regions; instead of exploding a region to 2^d, it reduces to $2d$.

- we have traded lesser number of regions to search at the expense dealing with duplicate and their removal.

- any one of these duplicate removal technique can be employed

 1. Laisser-Faire: maintain an in-memory hash table that keys in each point and flags it a duplicate if already present in the hash-table.

 2. Propagate: when a point p is found, remove all instances of p from all unvisited nodes.

 3. Merge: merge partitions to form non-overlap regions.
an R-tree is built on the data points. Construct a priority queue that arranges objects in an MinDist ordering relative to the origin (uses an L_1 distance norm)
Branch and Bound Skyline [Papadias, SIGMOD-2003]

Insert top level of the hierarchy
Branch and Bound Skyline [Papadias, SIGMOD-2003]

- explode N_3
report \(i \), explode the blue block
remove $N5, g, p, N2$ as they are all dominated by i, explode $N1$
Branch and Bound Skyline [Papadias, SIGMOD-2003]

- Report a. Remove i, b, c. Dominated by either i or a.
Branch and Bound Skyline [Papadias, SIGMOD-2003]

- Report k

Diagram showing points on a 2D graph with axes for Price and Distance. Points are labeled from a to k, and the diagram includes regions N1 to N5 with some points marked inside them.
Variations of the skyline queries

- Ranked skyline queries: an alternate *preference function* is used instead of the minimum criterion.
 - The priority queue uses the alternate preference-function to compute *MinDist* to the elements in the queue

- Constrained skyline queries: The skyline query returns skyline points only from the data-space defined by the constraint
 - when inserting objects into the priority queue, prune objects that completely lie outside the constraint region.

- Enumerating queries: For each skyline point in the dataset, find the number of points in the dataset dominated by it.
 - Identify the skyline points; define the spatial bounds for the region where a skyline point dominates.
 - Scan all points in the dataset and check it against the spatial extent for each of the skyline point. The total number of point-region intersection gives the required count for each skyline point.

- K-Dominating queries retrieves the K points that dominate the largest number of points in the dataset.