Course Goal

To make you a better programmer

• Deconstruct relevant programming problems
• Solve them in an object-oriented style, focusing on
 – Reusability
 – Maintainability (clarity)
 – Design
 – (Performance is secondary)
Approach

• Will use the Java programming language exclusively
 – But the ideas apply to other languages too

• Sequential object-oriented (OO) programming
 – Basic principles and tools, and
 – Design patterns to improve reusability and reliability

• Concurrent OO programming
 – Emphasis: shared-memory multi-threading (Java Thread class)
 – Also distributed message passing (J2EE, RMI, etc.)

Topics

• Java review, new features in Java 5.0
• Programming techniques and tools
 – Specifications and testing
• Design patterns
 – And refactoring
• Concurrency
 – Concurrent programming in Java
 – Design patterns
• Distributed programming
• Special topics
 – Possibilities include refactoring, security, event-based programming, reflection, memory management, XML, ...?
Style

• Interaction
 – This is your course: what do you want to learn?

• Discussion
 – Not just professor/TA to student, but student to student, with regard to ideas, techniques, and solutions

• Learn by doing
 – If you don’t put effort into the programming projects, you will learn very little

Texts

Your Brain on Design Patterns

Head First Design Patterns

O’REILLY

JAVA Concurrency in Practice
Additional reference materials

- Lots of resources
 - many on-line and free
- Will be pointed out during semester
- Find your own
 - If you copy code from any resource, acknowledge it

Projects

- Six total projects
 - Will extend project templates we provide
- Focus on networked applications
 - Encourages modular, abstract design
 - Admits natural use of concurrency and distribution
 - Relevant in our connected society
Project Submission

- Projects due at 6pm on due date
 - By Unix time of day
 - You must submit a good-faith effort
 - You can be failed for the course if you do not
 - Late submission up to 9am the next morning
 - Score is multiplied by 0.8

Project grading and class accounts

- We will use the SubmitServer system for project submission and testing
 - Linux lab account for cvs access only
 - Use your own campus accounts for course work
 - see me if this is a problem
- Course grades (and cvs accounts) will be done using grades.cs.umd.edu
 - All linked from course web page resources
Software

• Will be using:
 – Java 5.0+
 – Eclipse 3.1 IDE
 • Including Clover code coverage plug-in
 – JUnit

Marmoset Research Project

• You will be asked to participate in the Marmoset research project
 – gives us permission to study your work on programming projects for research purposes
• Other than signing a consent form, you don’t have to do anything different to participate
Open Source Contribution Project

- One special project:
 - make a contribution to a large open source software project
 - large meaning 40,000+ lines of code

- Everyone has to pick something different
 - could be different contributions to same project

A simple contribution: bug fix

- Find a large Java App
 - Download it, build it, run it.
- Run FindBugs over it
- Understand, document code defect
- Write test cases
- Fix defect
- submit your work to the project
More aggressive contributions

- Find a problem report in a bug database
 - Figure out what the defect is
 - Document and fix, as before
- Add a feature to an open source project
 - e.g., “Mozilla’s new HTML editor has support for ftp, but not sftp -- add sftp support” -- Jeff Hollingsworth
 - Plenty of stuff for FindBugs
 - Ask around (faculty, others)

Grading of open source project

- Project intended to get your feet wet with real software
- Grade not based on size of contribution, but on how seriously you take it
- Just blasting email to the developers list (“Hey, line 45 of FooBar.java contains a bug”) won’t count for much
- For overachievers, prizes for anyone who does a significant contribution
Exams

- One midterm: Wednesday, March 30th
- Final

Grading

<table>
<thead>
<tr>
<th></th>
<th>#</th>
<th>% each</th>
<th>% total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projects</td>
<td>6</td>
<td>8.3</td>
<td>50</td>
</tr>
<tr>
<td>Mid-terms</td>
<td>1</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>Final</td>
<td>1</td>
<td>26</td>
<td>30</td>
</tr>
</tbody>
</table>
Discussion and Questions

• Web forum
 – Web-based discussion pages
 – Can post to from off-campus
 – Linked from course web page
• Post questions to projects, pointers to resources, etc.
 – Will be monitored by professor and TA
 – Don’t cross the line! Help on ideas of projects; never post code or pseudocode that gives away the exact approach.

Office Hours

• Professor Michael Hicks, mwh at cs.umd.edu
 – 4131 AVW
• TAs: Nat Ayewah
 – Office hours in 1112 AVW
• All hours posted on web page
 – http://www.cs.umd.edu/class/spring2006/cmsc433
 – Or set up an appointment
Excused Absences

• Religious holidays or other personal conflicts
 – Let us know as soon as you get the project

• Medical and other emergencies
 – Must provide documentation stating what dates/times you were incapacitated
 – Self reporting is not sufficient

Stay up to Date

http://www.cs.umd.edu/class/spring2006/cmsc433
Contains:
• Announcements
• Lecture notes
• Project assignments
• Resources
• And more!