Questions?

• Project #4
• HW #7 due next week
• Class survey
• Exam: 17th of May, 10:30am to 12:30pm
 – Closed books
Quantitative Evaluation

• Gather (performance) measurements

• Methods
 – User events collection
 • Mouse clicks, keys pressed, ...
 • Data collected during system use
 – Google, Amazon
 – Controlled experiments
 • Set forth a testable hypothesis
 • Manipulate one or more independent variable
 • Observe effect on one or more dependent variable
 • Can be reproduced by others
Controlled experiment

• State a lucid, testable hypothesis
• Identify independent and dependent variables
• Design the experimental protocol
• Choose the user population
• Apply for human subjects protocol review
• Run a couple of pilots
• Run the experiment
• Run statistical analysis
• Draw conclusions
Running example

- Compare Scrolling Techniques
 - ScrollPoint
 - Standard Wheel
 - Accelerated Wheel (2 methods)
State a lucid, testable hypothesis

“With a proper acceleration function, a scroll-wheel based system can be faster than a ScrollPoint.”
Choose the variables

• Manipulate one or more *independent* variable
 – Method
 – Device type…

• Observe effect on one or more *dependent* variable
 – Time to completion
 – Accuracy
 – Error rate…

• Running example
 – Independent variable: method
 – Dependent variable: speed, error rate, user satisfaction…
Design the experimental protocol

• Between or within subjects?
 – Between subjects: each subject run one condition
 • Need more subjects
 – Within subjects: each subject run several conditions
 • Need less subjects but possible problem with skill transfer
 – Very important for the statistical analysis phase

• Which task?
 – Must reflect the hypothesis
 – Must avoid bias
 • Instructions, ordering...
 • In doubt, always favor the null hypothesis
Design the experimental protocol

- Running Example:
 - Navigating in a document
 - *Using a simplified navigation task*
 - Use Fitts’ law as the experimental framework
Chose the user population

• Pick a well balanced sample
 – Novices, experts, average
 – Age group
 – Sex…

• Population group may be one of the independent variable

• Running example
 – Used a wide range of age
Run the experiment

- Always run pilots first!
 - There are always unexpected problem!
 - When the experiment has started you cannot pick and choose

- Use a check-list so that all subjects follow the same steps

- Don’t forget the consent form!

- Don’t forget to debrief each subjects
Running example result I
Running example result II
Run statistical analysis

• Properties of our population
 – Mean, variance…

• How different data sets relate to each other
 – Are we sampling from similar or different distributions?

• Probability that our claims are correct
 – Statistical significance:
 “The hypothesis that technique X is faster is accepted (p < .05)”
 means that there is a higher than 95% chance the hypothesis is true
 – Typical level are .05 and .01 level
Statistical tools I

• T-test
 – Compare the mean of 2 populations
 • Null hypothesis: no difference between means
 – Assumptions
 • Samples are normally distributed
 – Very robust in practice
 • Population variances are equal
 – Reasonably robust for differing variances
 • Individual observations in samples are independent
 – Very important
Statistical tools II

• Correlation
 – Measure the extent to which 2 concepts are related
 – Caveats
 • *Correlation does not imply cause and effect (hidden variable)*
 – Ice cream consumption and drowning
 • *Need a large enough group*

• Regression
 – Calculate the “best fit”

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>R²</th>
<th>Slope</th>
<th>Intercept (s)</th>
<th>IP (bps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ScrollPoint</td>
<td>0.97</td>
<td>0.94</td>
<td>0.84</td>
<td>0.42</td>
<td>1.19</td>
</tr>
<tr>
<td>Accel W1</td>
<td>0.90</td>
<td>0.81</td>
<td>1.16</td>
<td>-0.51</td>
<td>0.86</td>
</tr>
<tr>
<td>Accel W3</td>
<td>0.97</td>
<td>0.95</td>
<td>0.80</td>
<td>0.18</td>
<td>1.25</td>
</tr>
<tr>
<td>Wheel Std</td>
<td>0.94</td>
<td>0.88</td>
<td>1.25</td>
<td>-0.42</td>
<td>0.80</td>
</tr>
</tbody>
</table>
Statistical tool III

• **ANOVA**
 – Single factor analysis of variance
 • *Compare three or more means*
 – Analysis of variance
 • *Compare relationship between many factor*
 – Beginners type at the same speed on all keyboards,
 – Touch-typist type fastest on the qwerty

• **Running example**
 – Accept the hypothesis

• **Your protocol influence the kind of test you can use**
 – In doubt consult with a statistician before starting the experiment!
Draw conclusions

• Running example
 – What is the scope of the finding?
 • *Does the experiment reflect real use?*
 • *Are there other parameters at play?*
Quantitative approach outcome

• Low level effects
 – Patterns of use
 – Scrolling method A faster than method B

• Pros and cons
 – Objective measurements
 • Good internal validity
 – Real world implications sometime difficult to foresee
 – Effects might be dwarfed in real world settings
 • 3.05s versus 3.00s?