1. For each type, construct a simply-typed lambda calculus term (variables, functions, and function application only) whose most general type is that type, or argue that no term has that type. (Hint: You can double-check your answers in OCaml.)

(a) $\alpha \to \beta \to \beta$
(b) $(\alpha \to \beta \to \gamma) \to \beta \to \alpha \to \gamma$
(c) $\alpha \to \beta$
(d) $\alpha \to \alpha \to \alpha$

2. Does the simply-typed lambda calculus with integers have a subject expansion property, meaning if $\Gamma \vdash e : \tau$ and $e' \to e$, does $\Gamma \vdash e' : \tau$? Here \to is reduction under call-by-value semantics. Either prove that subject expansion holds, or give a counterexample showing that it does not hold.

3. Suppose we were to add booleans to the simply-typed lambda calculus:

$$e ::= x \mid n \mid true \mid false \mid \lambda x.e \mid e \ e \mid if\ e\ then\ e\ else\ e$$

(a) Write down small-step call-by-value semantic rules for the new forms $true$, $false$, and if. (Here if should behave as it does in O’Caml, evaluating to the result of either the true or false branch depending on the guard.)

(b) Extend the typing judgment $\Gamma \vdash e : \tau$ to the new forms $true$, $false$, and if.

(c) Prove progress and preservation for the extended language. (You don’t need to reprove the cases for the old forms.)