Data Flow Analysis

CMSC 631 — Program Analysis and Understanding
Spring 2006

Source code parsed to produce AST
AST transformed to CFG
Data flow analysis operates on control flow graph (and other intermediate representations)

Abstract Syntax Tree (AST)

- Programs are written in text
 - i.e., sequences of characters
 - Awkward to work with
- First step: Convert to structured representation
 - Use lexer (like flex) to recognize tokens
 - Sequences of characters that make words in the language
 - Use parser (like bison) to group words structurally
 - And, often, to produce AST

ASTs

- ASTs are abstract
 - They don’t contain all information in the program
 - E.g., spacing, comments, brackets, parentheses
 - Any ambiguity has been resolved
 - E.g., a + b + c produces the same AST as (a + b) + c
- For more info, see CMSC 430
 - In this class, we will generally begin at the AST level

Disadvantages of ASTs

- AST has many similar forms
 - E.g., for, while, repeat...until
 - E.g., if, ?, switch
- Expressions in AST may be complex, nested
 - (42 * y) + (z > 5 ? 12 * z : z + 20)
- Want simpler representation for analysis
 - ...at least, for dataflow analysis

Compiler Structure

Source Code → Abstract Syntax Tree → Control Flow Graph → Object Code

Abstract Syntax Tree Example

Program
x := a + b;
y := a * b;
while (y > a) {
 a := a + 1;
 x := a + b
}

Disadvantages of ASTs

- AST has many similar forms
 - E.g., for, while, repeat...until
 - E.g., if, ?, switch
- Expressions in AST may be complex, nested
 - (42 * y) + (z > 5 ? 12 * z : z + 20)
- Want simpler representation for analysis
 - ...at least, for dataflow analysis
Control-Flow Graph (CFG)

- A directed graph where
 - Each node represents a statement
 - Edges represent control flow

- Statements may be
 - Assignments \(x := y \text{ op } z \) or \(x := \text{ op } z \)
 - Copy statements \(x := y \)
 - Branches \(\text{goto L} \) or \(\text{if } x \text{ relop } y \text{ goto L} \)
 - etc.

Control-Flow Graph Example

\[
\begin{align*}
\text{x := a + b;} \\
y := a \ast b; \\
\text{while (y > a) } \\
\quad a := a + 1; \\
\quad x := a + b \\
\end{align*}
\]

Variations on CFGs

- We usually don’t include declarations (e.g., \text{int x;}\)
 - But there’s usually something in the implementation

- May want a unique entry and exit node
 - Won’t matter for the examples we give

- May group statements into basic blocks
 - A sequence of instructions with no branches into or out of the block

Control-Flow Graph w/Basic Blocks

\[
\begin{align*}
x := a + b; \\
y := a \ast b; \\
\text{while (y > a + b) } \\
\quad a := a + 1; \\
\quad x := a + b \\
\end{align*}
\]

- Can lead to more efficient implementations
 - But more complicated to explain, so...
 - We’ll use single-statement blocks in lecture today

CFG vs. AST

- CFGs are much simpler than ASTs
 - Fewer forms, less redundancy, only simple expressions

- But...AST is a more faithful representation
 - CFGs introduce temporaries
 - Lose block structure of program

- So for AST,
 - Easier to report error + other messages
 - Easier to explain to programmer
 - Easier to unparse to produce readable code

Data Flow Analysis

- A framework for proving facts about programs
- Reasons about lots of little facts
- Little or no interaction between facts
 - Works best on properties about how program computes
- Based on all paths through program
 - Including infeasible paths
Available Expressions

- An expression \(e \) is available at program point \(p \) if
 - \(e \) is computed on every path to \(p \), and
 - the value of \(e \) has not changed since the last time \(e \) is computed on \(p \)

- Optimization
 - If an expression is available, need not be recomputed
 - (At least, if it’s still in a register somewhere)

Data Flow Facts

- Is expression \(e \) available?
- Facts:
 - \(a + b \) is available
 - \(a \times b \) is available
 - \(a + 1 \) is available

Gen and Kill

- What is the effect of each statement on the set of facts?

<table>
<thead>
<tr>
<th>Stmt</th>
<th>Gen</th>
<th>Kill</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x := a + b)</td>
<td>(a + b)</td>
<td>(a + b)</td>
</tr>
<tr>
<td>(y := a \times b)</td>
<td>(a \times b)</td>
<td>(a \times b)</td>
</tr>
<tr>
<td>(a := a + 1)</td>
<td>(a + 1, a + b, a \times b)</td>
<td>(a + 1)</td>
</tr>
</tbody>
</table>

Computing Available Expressions

<table>
<thead>
<tr>
<th>(\emptyset)</th>
<th>(x := a + b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x := a + b)</td>
<td>(a := a + 1)</td>
</tr>
<tr>
<td>(y := a \times b)</td>
<td>(y := a \times b)</td>
</tr>
<tr>
<td>(y := a)</td>
<td>((a + b))</td>
</tr>
<tr>
<td>(a := a + 1)</td>
<td>((a + b))</td>
</tr>
<tr>
<td>(\emptyset)</td>
<td>((a + b))</td>
</tr>
<tr>
<td>((a + b))</td>
<td>(x := a + b)</td>
</tr>
</tbody>
</table>

Terminology

- A joint point is a program point where two branches meet

- Available expressions is a forward must problem
 - Forward = Data flow from in to out
 - Must = At join point, property must hold on all paths that are joined

Data Flow Equations

- Let \(s \) be a statement
 - \(\text{succ}(s) = \{ \text{immediate successor statements of } s \} \)
 - \(\text{pred}(s) = \{ \text{immediate predecessor statements of } s \} \)
 - \(\text{In}(s) = \text{program point just before executing } s \)
 - \(\text{Out}(s) = \text{program point just after executing } s \)

 \[\text{In}(s) = \bigcap_{s' \in \text{pred}(s)} \text{Out}(s') \]
 \[\text{Out}(s) = \text{Gen}(s) \cup (\text{In}(s) - \text{Kill}(s)) \]

 - Note: These are also called transfer functions
Liveness Analysis

- A variable \(v \) is live at program point \(p \) if
 - \(v \) will be used on some execution path originating from \(p \).
 - before \(v \) is overwritten.

- Optimization
 - If a variable is not live, no need to keep it in a register.
 - If variable is dead at assignment, can eliminate assignment.

Data Flow Equations

- Available expressions is a forward must analysis
 - Data flow propagate in same dir as CFG edges.
 - Expr is available only if available on all paths.

- Liveness is a backward may problem
 - To know if variable live, need to look at future uses.
 - Variable is live if used on some path.

\[
\text{Out}(s) = \bigcup_{s' \in \text{succ}(s)} \text{In}(s')
\]
\[
\text{In}(s) = \text{Gen}(s) \cup (\text{Out}(s) - \text{Kill}(s))
\]

Gen and Kill

- What is the effect of each statement on the set of facts?

<table>
<thead>
<tr>
<th>Stmt</th>
<th>Gen</th>
<th>Kill</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x := a + b)</td>
<td>(a, b)</td>
<td>(x)</td>
</tr>
<tr>
<td>(y := a \ast b)</td>
<td>(a, b)</td>
<td>(y)</td>
</tr>
<tr>
<td>(y > a)</td>
<td>(a, y)</td>
<td></td>
</tr>
<tr>
<td>(a := a + 1)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
</tbody>
</table>

Computing Live Variables

- \(\{x, y, a, b\} \)

Very Busy Expressions

- An expression \(e \) is very busy at point \(p \) if
 - On every path from \(p \), expression \(e \) is evaluated before the value of \(e \) is changed.

- Optimization
 - Can hoist very busy expression computation.

- What kind of problem?
 - Forward or backward? backward
 - May or must? must

Reaching Definitions

- A definition of a variable \(v \) is an assignment to \(v \)
 - A definition of variable \(v \) reaches point \(p \) if
 - There is no intervening assignment to \(v \).

- Also called def-use information

- What kind of problem?
 - Forward or backward? forward
 - May or must? may
Most data flow analyses can be classified this way
- A few don’t fit: bidirectional analysis
- Lots of literature on data flow analysis

Space of Data Flow Analyses

<table>
<thead>
<tr>
<th></th>
<th>May</th>
<th>Must</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward</td>
<td>Reaching definitions</td>
<td>Available expressions</td>
</tr>
<tr>
<td>Backward</td>
<td>Live variables</td>
<td>Very busy expressions</td>
</tr>
</tbody>
</table>

• Most data flow analyses can be classified this way
 - A few don’t fit: bidirectional analysis
 - Lots of literature on data flow analysis

Data Flow Facts and Lattices

- Typically, data flow facts form a lattice
 - Example: Available expressions

Partial Orders

- A partial order is a pair \((P, \leq)\) such that
 - \(\leq \subseteq P \times P\)
 - \(\leq\) is reflexive: \(x \leq x\)
 - \(\leq\) is anti-symmetric: \(x \leq y\) and \(y \leq x\) \(\Rightarrow x = y\)
 - \(\leq\) is transitive: \(x \leq y\) and \(y \leq z\) \(\Rightarrow x \leq z\)

Lattices

- A partial order is a lattice if \(\sqcap\) and \(\sqcup\) are defined on any set:
 - \(\sqcap\) is the meet or greatest lower bound operation:
 - \(x \sqcap y \leq x\) and \(x \sqcap y \leq y\)
 - if \(z \leq x\) and \(z \leq y\), then \(z \leq x \sqcap y\)
 - \(\sqcup\) is the join or least upper bound operation:
 - \(x \leq x \sqcup y\) and \(y \leq x \sqcup y\)
 - if \(x \leq z\) and \(y \leq z\), then \(x \sqcup y \leq z\)

Lattices (cont’d)

- A finite partial order is a lattice if meet and join exist for every pair of elements
- A lattice has unique elements \(\bot\) and \(\top\) such that
 - \(x \sqcap \bot = \bot\)
 - \(x \sqcup \bot = x\)
 - \(x \sqcap \top = x\)
 - \(x \sqcup \top = \top\)

- In a lattice,
 - \(x \leq y\) if \(x \sqcap y = x\)
 - \(x \leq y\) if \(x \sqcup y = y\)

Useful Lattices

- \((2^S, \subseteq)\) forms a lattice for any set \(S\)
 - \(2^S\) is the powerset of \(S\) (set of all subsets)

- If \((S, \leq)\) is a lattice, so is \((S, \geq)\)
 - i.e., lattices can be flipped

- The lattice for constant propagation

- (none)
Forward Must Data Flow Algorithm

- Out(s) = Top for all statements s
 - // Slight acceleration: Could set Out(s) = Gen(s) ∪ (Top - Kill(s))
- W := { all statements } (worklist)
- repeat
 - Take s from W
 - In(s) := \bigcap_{s' ∈ \text{pred}(s)} Out(s')
 - temp := Gen(s) ∪ (In(s) - Kill(s))
 - if (temp != Out(s)) {
 - Out(s) := temp
 - W := W \cup \text{succ}(s)
 }
- until W = ∅

Monotonicity

- A function f on a partial order is monotonic if
 \[x \leq y \Rightarrow f(x) \leq f(y) \]
- Easy to check that operations to compute In and Out are monotonic
 - In(s) := \bigcap_{s' ∈ \text{pred}(s)} Out(s')
 - temp := Gen(s) ∪ (In(s) - Kill(s))
- Putting these two together,
 - temp := f_s(\bigcap_{s' ∈ \text{pred}(s)} \text{Out}(s'))

Termination

- We know the algorithm terminates because
 - The lattice has finite height
 - The operations to compute In and Out are monotonic
 - On every iteration, we remove a statement from the worklist and/or move down the lattice

Forward Data Flow, Again

- Out(s) = Top for all statements s
- W := { all statements } (worklist)
- repeat
 - Take s from W
 - In(s) := \bigcap_{s' ∈ \text{pred}(s)} Out(s')
 - temp := f_s(\bigcap_{s' ∈ \text{pred}(s)} \text{Out}(s')) (f_s monotonic transfer fn)
 - if (temp != Out(s)) {
 - Out(s) := temp
 - W := W \cup \text{succ}(s)
 }
- until W = ∅

Lattices (P, ≤)

- Available expressions
 - P = sets of expressions
 - S1 ∩ S2 = S1 \cap S2
 - Top = set of all expressions
- Reaching Definitions
 - P = set of definitions (assignment statements)
 - S1 ∩ S2 = S1 \cup S2
 - Top = empty set

Fixpoints

- We always start with Top
 - Every expression is available, no defs reach this point
 - Most optimistic assumption
 - Strongest possible hypothesis
 - = true of fewest number of states
 - Revise as we encounter contradictions
 - Always move down in the lattice (with meet)
 - Result: A greatest fixpoint
Lattices \((P, \leq)\), cont’d

- **Live variables**
 - \(P\) = sets of variables
 - \(S_1 \cap S_2 = S_1 \cup S_2\)
 - Top = empty set

- **Very busy expressions**
 - \(P\) = set of expressions
 - \(S_1 \cap S_2 = S_1 \propto S_2\)
 - Top = set of all expressions

Forward vs. Backward

\[
\begin{align*}
\text{Out}(s) &= \text{Top} \quad \text{for all } s \\
W &:= \{ \text{all statements} \} \\
\text{repeat} &\quad \text{Take } s \text{ from } W \\
\text{temp} &:= f(s) (\cap s' \in \text{pred}(s) \text{ Out}(s')) \\
\text{if } (\text{temp} \neq \text{Out}(s)) &\quad \text{Out}(s) := \text{temp} \\
W &:= W \cup \text{succ}(s) \\
\text{until } W = \emptyset
\end{align*}
\]

\[
\begin{align*}
\text{In}(s) &= \text{Top} \quad \text{for all } s \\
W &:= \{ \text{all statements} \} \\
\text{repeat} &\quad \text{Take } s \text{ from } W \\
\text{temp} &:= f(s) (\cap s' \in \text{pred}(s) \text{ In}(s')) \\
\text{if } (\text{temp} \neq \text{In}(s)) &\quad \text{In}(s) := \text{temp} \\
W &:= W \cup \text{succ}(s) \\
\text{until } W = \emptyset
\end{align*}
\]

Termination Revisited

- How many times can we apply this step:
 \[
 \text{temp} := f(s) (\cap s' \in \text{pred}(s) \text{ Out}(s')) \\
 \text{if } (\text{temp} \neq \text{Out}(s)) \{ \ldots \}
 \]

- **Claim:** \(\text{Out}(s)\) only shrinks
 - Proof: \(\text{Out}(s)\) starts out as top
 - So \(\text{temp}\) must be \(\leq\) than Top after first step
 - Assume \(\text{Out}(s')\) shrinks for all predecessors \(s'\) of \(s\)
 - Then \(\cap s' \in \text{pred}(s) \text{ Out}(s')\) shrinks
 - Since \(f\) monotonic, \(f(\cap s' \in \text{pred}(s) \text{ Out}(s'))\) shrinks

Least vs. Greatest Fixpoints

- **Dataflow tradition:** Start with Top, use meet
 - To do this, we need a meet semilattice with top
 - meet semilattice = meets defined for any set
 - Computes greatest fixpoint

- **Denotational semantics tradition:** Start with Bottom, use join
 - Computes least fixpoint

Distributive Data Flow Problems

- By monotonicity, we also have
 \[
 f(x \cap y) \leq f(x) \cap f(y)
 \]

- A function \(f\) is distributive if
 \[
 f(x \cap y) = f(x) \cap f(y)
 \]
Benefit of Distributivity

- Joins lose no information

\[
\begin{align*}
 k(b(f(T) \cap g(T))) &= \\rule{0pt}{0.6cm} \\
 k(h(f(T))) \cap h(g(T))) &= \\rule{0pt}{0.6cm} \\
 k(h(f(T))) \cap k(h(g(T))) &= \\rule{0pt}{0.6cm}
\end{align*}
\]

Accuracy of Data Flow Analysis

- Ideally, we would like to compute the meet over all paths (MOP) solution:
 - Let \(f_s \) be the transfer function for statement \(s \)
 - If \(p \) is a path \(\{s_1, ..., s_n\} \), let \(f_p = f_{s_n} \cdots f_{s_1} \)
 - Let \(\text{path}(s) \) be the set of paths from the entry to \(s \)

\[
 \text{MOP}(s) = \bigcap_{p \in \text{path}(s)} f_p(T)
\]

- If a data flow problem is distributive, then solving the data flow equations in the standard way yields the MOP solution

What Problems are Distributive?

- Analyses of how the program computes
 - Live variables
 - Available expressions
 - Reaching definitions
 - Very busy expressions

- All Gen/Kill problems are distributive

A Non-Distributive Example

- Constant propagation

```
x := 1
y := 2
x := 2
y := 1
z := x + y
```

- In general, analysis of what the program computes in not distributive

Practical Implementation

- Data flow facts = assertions that are true or false at a program point

- Represent set of facts as bit vector
 - Fact, represented by bit \(i \)
 - Intersection = bitwise and, union = bitwise or, etc

- “Only” a constant factor speedup
 - But very useful in practice

Basic Blocks

- A basic block is a sequence of statements s.t.
 - No statement except the last in a branch
 - There are no branches to any statement in the block except the first

- In practical data flow implementations,
 - Compute Gen/Kill for each basic block
 - Compose transfer functions
 - Store only In/Out for each basic block
 - Typical basic block ~5 statements
Order Matters

- Assume forward data flow problem
 - Let $G = (V, E)$ be the CFG
 - Let k be the height of the lattice

- If G acyclic, visit in topological order
 - Visit head before tail of edge
 - Running time $O(|E|)$
 - No matter what size the lattice

Order Matters — Cycles

- If G has cycles, visit in reverse postorder
 - Order from depth-first search
 - Let $Q = \max$ # back edges on cycle-free path
 - Nesting depth
 - Back edge is from node to ancestor on DFS tree
 - Then if $\forall x. f(x) \leq x$ (sufficient, but not necessary)
 - Running time is $O((Q + 1)|E|)$
 - Note direction of req’t depends on top vs. bottom

Flow-Sensitivity

- Data flow analysis is flow-sensitive
 - The order of statements is taken into account
 - I.e., we keep track of facts per program point

- Alternative: Flow-insensitive analysis
 - Analysis the same regardless of statement order
 - Standard example: types
 - $\mathtt{int} : \mathtt{int}$

Terminology Review

- Must vs. May
 - (Not always followed in literature)
- Forwards vs. Backwards
- Flow-sensitive vs. Flow-insensitive
- Distributive vs. Non-distributive

Another Approach: Elimination

- Recall in practice, one transfer function per basic block

- Why not generalize this idea beyond a basic block?
 - “Collapse” larger constructs into smaller ones, combining data flow equations
 - Eventually program collapsed into a single node!
 - “Expand out” back to original constructs, rebuilding information

Lattices of Functions

- Let (P, \leq) be a lattice
- Let M be the set of monotonic functions on P
- Define $f \leq g$ if for all $x, f(x) \leq g(x)$
- Define the function $f \cap g$ as
 - $(f \cap g)(x) = f(x) \cap g(x)$
- Claim: (M, \leq) forms a lattice
Elimination Methods: Conditionals

\[
f_{\text{ite}} = (f_{\text{then}} \circ f_{\text{if}}) \sqcap (f_{\text{else}} \circ f_{\text{if}})
\]
Out(if) = \(f_{\text{if}}(\text{In}(\text{ite})) \)
Out(then) = \((f_{\text{then}} \circ f_{\text{if}})(\text{In}(\text{ite})) \)
Out(else) = \((f_{\text{else}} \circ f_{\text{if}})(\text{In}(\text{ite})) \)

Elimination Methods: Loops (cont’d)

• Let \(f^i = f \circ f \circ \ldots \circ f \) (\(i \) times)
 • \(f^0 = \text{id} \)
• Let
 \[
g(j) = \sqcap_{k \in [0..j]} (f_{\text{head}} \circ f_{\text{body}})^k \circ f_{\text{head}}
 \]
• Need to compute limit as \(j \) goes to infinity
 • Does such a thing exist?
• Observe: \(g(j+1) \leq g(j) \)

Elimination Methods: Loops

\[
f_{\text{while}} = f_{\text{head}} \sqcap f_{\text{head}} \circ f_{\text{body}} \circ f_{\text{head}} \sqcap f_{\text{head}} \circ f_{\text{body}} \circ f_{\text{head}} \circ f_{\text{body}} \circ f_{\text{head}} \sqcap \ldots
\]

Height of Function Lattice

• Assume underlying lattice \((\mathcal{P}, \leq)\) has finite height
 • What is height of lattice of monotonic functions?
 • Claim: finite (see homework)
• Therefore, \(g(j) \) converges

Non-Reducible Flow Graphs

• Elimination methods usually only applied to reducible flow graphs
 • Ones that can be collapsed
 • Standard constructs yield only reducible flow graphs
• Unrestricted goto can yield non-reducible graphs

Comments

• Can also do backwards elimination
 • Not quite as nice (regions are usually single entry but often not single exit)
• For bit-vector problems, elimination efficient
 • Easy to compose functions, compute meet, etc.
• Elimination originally seemed like it might be faster than iteration
 • Not really the case
Data Flow Analysis and Functions

- What happens at a function call?
 - Lots of proposed solutions in data flow analysis literature
- In practice, only analyze one procedure at a time
- Consequences
 - Call to function kills all data flow facts
 - May be able to improve depending on language, e.g., function call may not affect locals

More Terminology

- An analysis that models only a single function at a time is *intaprocedural*
- An analysis that takes multiple functions into account is *interprocedural*
- An analysis that takes the whole program into account is... guess?
- Note: *global* analysis means “more than one basic block,” but still within a function

Data Flow Analysis and The Heap

- Data Flow is good at analyzing local variables
 - But what about values stored in the heap?
 - Not modeled in traditional data flow
- In practice: *x := e*
 - Assume all data flow facts killed (!)
 - Or, assume write through x may affect any variable whose address has been taken
- In general, hard to analyze pointers

Data Flow Analysis and Optimization

- Moore’s Law: Hardware advances double computing power every 18 months.
- Proebsting’s Law: Compiler advances double computing power every 18 years.
- We’ll focus on other uses of data flow analysis in this class (later in the semester)