Commonly-used programming languages are large and complex:
- ANSI C99 standard: 538 pages
- ANSI C++ standard: 714 pages
- Java language specification 2.0: 505 pages

Not good vehicles for understanding language features or explaining program analysis.

Develop a “core language” that has:
- The essential features
- No overlapping constructs
- And none of the cruft
 - Extra features of full language can be defined in terms of the core language (“syntactic sugar”)

Lambda calculus:
- Standard core language for single-threaded procedural programming
- Often with added features (e.g., state); we’ll see that later

Syntax:
- $e ::= x$ variable
- $\lambda x. e$ function abstraction
- $e e$ function application

Only constructs in pure lambda calculus:
- Functions take functions as arguments and return functions as results
- I.e., the lambda calculus supports higher-order functions
Semantics

• To evaluate \((\lambda x.e1) e2\)
 - Bind \(x\) to \(e2\)
 - Evaluate \(e1\)
 - Return the result of the evaluation

• This is called “beta-reduction”
 - \((\lambda x.e1) e2 \rightarrow^\beta e1[e2/x]\)
 - \((\lambda x.e1) e2\) is called a redex
 - We’ll usually omit the beta

Scoping and Parameter Passing

• Beta-reduction is not yet precise
 - \((\lambda x.e1) e2 \rightarrow e1[e2/x]\)
 - what if there are multiple \(x\)’s?

 • Example:
 - let \(x = a\) in let \(y = \lambda z.x\) in let \(x = b\) in \(y x\)
 - which \(x\)’s are bound to \(a\), and which to \(b\)?

Free Variables and Alpha Conversion

• The set of free variables of a term is

 \[FV(x) = \{x\}\]
 \[FV(\lambda x.e) = FV(e) \setminus \{x\}\]
 \[FV(e1 e2) = FV(e1) \cup FV(e2)\]

• A term \(e\) is closed if \(FV(e) = \emptyset\)

• A variable that is not free is bound

Three Conveniences

• Syntactic sugar for local declarations
 - let \(x = e1\) in \(e2\) is short for \((\lambda x.e1) e2\)

• Scope of \(\lambda\) extends as far to the right as possible
 - \(\lambda x.\lambda y.x y\) is \(\lambda x.(\lambda y.(x y))\)

• Function application is left-associative
 - \(x y z\) is \((x y) z\)

Static (Lexical) Scope

• Just like most languages, a variable refers to the closest definition

• Make this precise using variable renaming
 - The term
 - let \(x = a\) in let \(y = \lambda z.x\) in let \(x = b\) in \(y x\)
 - is “the same” as
 - let \(x = a\) in let \(y = \lambda z.x\) in let \(w = b\) in \(y w\)
 - Variable names don’t matter

Alpha Conversion

• Terms are equivalent up to renaming of bound variables
 - \(\lambda x.e = \lambda y.(e[y/x])\) if \(y \notin FV(e)\)

• This is often called alpha conversion, and we will use it implicitly whenever we need to avoid capturing variables when we perform substitution
Substitution

- **Formal definition:**
 - $x[e/x] = e$
 - $z[e/x] = z$
 (if $z \neq x$)
 - $(e_1 e_2)[e/x] = (e_1[e/x] e_2[e/x])$
 - $(\lambda z. e_1)[e/x] = \lambda z. (e_1[e/x])$
 (if $z \neq x$ and $z \notin \text{FV}(e)$)

- **Example:**
 - $(\lambda x. y x) x = \alpha (\lambda w. y w) x \rightarrow \beta y x$
 - (We won’t write alpha conversion down in the future)

Multi-Argument Functions

- **We can’t (yet) write multi-argument functions**
 - E.g., a function of two arguments $\lambda(x, y). e$
 - **Trick:** Take arguments one at a time
 - $\lambda x. \lambda y. e$
 - This is a function that, given argument x, returns a function that, given argument y, returns e
 - $(\lambda x. \lambda y. e) a b \rightarrow (\lambda y. e[a/\lambda x]) b \rightarrow e[a/\lambda x][b/\lambda y]$
 - This is often called *Currying* and can be used to represent functions with any # of arguments

Booleans

- $true = \lambda x. \lambda y. x$
- $false = \lambda x. \lambda y. y$
- $if \ a \ then \ b \ else \ c = a \ b \ c$

- **Example:**
 - $if \ true \ then \ b \ else \ c \rightarrow (\lambda x. \lambda y. x) b \ c \rightarrow (\lambda y. b) c \rightarrow b$
 - $if \ false \ then \ b \ else \ c \rightarrow (\lambda x. \lambda y. y) b \ c \rightarrow (\lambda y. y) c \rightarrow c$

Combinators

- **Any closed term is also called a combinator**
 - So $true$ and $false$ are both combinators

- **Other popular combinators**
 - $I = \lambda x. x$
 - $S = \lambda x. \lambda y. x y$
 - $K = \lambda x. \lambda y. x y$
 - $K = \lambda x. \lambda y. x z z$
 - Can also define calculi in terms of combinators
 - E.g., the SKI calculus
 - Turns out the SKI calculus is also Turing complete

Pairs

- $(a, b) = \lambda x. if \ x \ then \ a \ else \ b$
- $fst = \lambda p.p \ true$
- $snd = \lambda p.p \ false$

- **Then**
 - $fst \ (a, b) \rightarrow^* a$
 - $snd \ (a, b) \rightarrow^* b$
Natural Numbers (Church)

- \(0 = \lambda x.\lambda y.y\)
- \(1 = \lambda x.\lambda y.y\ 0\)
- \(2 = \lambda x.\lambda y.y\ 1\)
- i.e., \(n = \lambda x.\lambda y.\text{<apply } x\ n\ \text{times to } y>\)

- \(\text{succ} = \lambda z.\lambda x.\lambda y.x(z x y)\)
- \(\text{iszero} = \lambda z.z\ (\lambda y.\text{false})\ \text{true}\)

Natural Numbers (Scott)

- \(0 = \lambda x.\lambda y.x\)
- \(1 = \lambda x.\lambda y.y\ 0\)
- \(2 = \lambda x.\lambda y.y\ 1\)
- i.e., \(n = \lambda x.\lambda y.\text{<apply } x\ n\ \text{times to } y>\)

- \(\text{succ} = \lambda z.\lambda x.\lambda y.y\ z\)
- \(\text{pred} = \lambda z.z\ 0\ (\lambda x.x)\)
- \(\text{iszero} = \lambda z.z\ \text{true}\ (\lambda x.\text{false})\)

Operational Semantics

- An operational semantics is a series of rules for evaluating (“running”) a program
 - Example: \(\text{Eval() from last time}\)

- So far we’ve defined one operational semantic rule, but it’s still not precise
 - \((\lambda x.e1)\ e2 \rightarrow e1[e2/x]\)
 - Where does this rule apply?
 - Current answer: Anywhere within a term

A Nonderministic Semantics

\[
\begin{align*}
(\lambda x.e) & \rightarrow (\lambda x.e') \\
(\lambda x.e1) e2 & \rightarrow e1[e2/x] \\
(\lambda e \rightarrow e') & \rightarrow (\lambda e')
\end{align*}
\]

- The rules are a small-step semantics
 - It takes many \(\rightarrow\)’s before we reach a normal form

Example

- We can apply reduction anywhere in a term
 - \((\lambda x.(\lambda y.x)((\lambda z.x) x)) \rightarrow \lambda x.(\lambda z.x) x\)
 - \((\lambda x.(\lambda y.x)((\lambda z.w) x)) \rightarrow \lambda x.(\lambda y.x((\lambda z.w) x))\)

- Does the order of evaluation matter?

Natural Deduction

- These are natural deduction style rules

\[
\begin{array}{c}
H_1 \quad H_2 \quad \ldots \quad H_n \\
\hline
C
\end{array}
\]

- Read: If hypotheses \(H_1\) through \(H_n\) hold, then conclusion \(C\) holds

- The rules are axioms that define something, in this case what \(\rightarrow\) means

- We will use this style of rule extensively
The Church-Rosser Theorem

• Lemma (The Diamond Property):
 ■ If $a \rightarrow b$ and $a \rightarrow c$, there exists d such that $b \rightarrow^* d$ and $c \rightarrow^* d$

• Church-Rosser Theorem:
 ■ If $a \rightarrow^* b$ and $a \rightarrow^* c$, there exists d such that $b \rightarrow^* d$ and $c \rightarrow^* d$

• Proof: By diamond property

Normal Form

• A term is in normal form if it cannot be reduced
 ■ Examples: $\lambda x.x$, $\lambda x.\lambda y.z$

• By Church-Rosser Theorem, every term reduces to at most one normal form
 ■ Warning: All of this applies only to the pure lambda calculus with non-deterministic evaluation

Not Every Term Has a Normal Form

• Consider
 ■ $\Delta = \lambda x.x x$
 ■ Then $\Delta \Delta \rightarrow \Delta \Delta \rightarrow \cdots$

 • In general, self application leads to loops
 ■ ...which is good if we want recursion

Beta-Equivalence

• Let \equiv_β be the reflexive, symmetric, and transitive closure of \rightarrow
 ■ E.g., $(\lambda x.x) y \rightarrow y \leftarrow (\lambda z.\lambda w.z) y y$, so all three are beta equivalent

• If $a \equiv_\beta b$, then there exists c such that $a \rightarrow^* c$ and $b \rightarrow^* c$

 ■ Proof: Consequence of Church-Rosser Theorem

 • In particular, if $a \equiv_\beta b$ and both are normal forms, then they are equal

A Fixpoint Combinator

• Also called a paradoxical combinator
 ■ $Y = \lambda f.(\lambda x.f (x x)) (\lambda x.f (x x))$

 ■ Note: There are many versions of this combinator

 • Then $Y F \equiv_\beta F (Y F)$
 ■ $Y F = (\lambda f.(\lambda x.f (x x)) (\lambda x.f (x x))) F$
 ■ $\rightarrow (\lambda x.F (x x)) (\lambda x.F (x x))$
 ■ $\rightarrow F ((\lambda x.F (x x)) (\lambda x.F (x x)))$
 ■ $\leftarrow F (Y F)$
Example

- Fact n = if n = 0 then 1 else n * fact(n-1)
- Let G = \(\lambda f. \langle \text{body of factorial} \rangle \)
 - I.e., G = \(\lambda f. \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \cdot f(n-1) \)
- \(Y \ G \ 1 = \beta \ G \ (Y \ G) \ 1 \)
 - = \(\beta \) if 1 = 0 then 1 else 1*(if 0 = 0 then 1 else 0*(Y G) 0)
 - = \(\beta \) 1*1 = 1

Encodings

- Encodings are fun
- They show language expressiveness
- In practice, we usually add constructs as primitives
 - Much more efficient
 - Much easier to perform program analysis on and avoid silly mistakes with
 - E.g., our encodings of true and 0 are exactly the same, but we may want to forbid mixing booleans and integers

Lazy vs. Eager Evaluation

- Our non-deterministic reduction rule is fine for theory, but awkward to implement
- Two deterministic strategies:
 - **Lazy**: Given \((\lambda x.e_1) e_2\), do not evaluate \(e_2\) if \(x\) does not “need” \(e_1\)
 - Also called left-most, call-by-name, call-by-need, applicative, normal-order (with slightly different meanings)
 - **Eager**: Given \((\lambda x.e_1) e_2\), always evaluate \(e_2\) fully before applying the function
 - Also called call-by-value

Lazy Operational Semantics

\[
(\lambda x.e_1) \rightarrow^l (\lambda x.e_1)
\]
\[
e_1 \rightarrow^l \lambda x.e \ e[e_2|x] \rightarrow^l e'
\]
\[
e_1 \ e_2 \rightarrow^l e'
\]
- The rules are deterministic and **big-step**
- The right-hand side is reduced “all the way”
- The rules do not reduce under \(\lambda\)
- The rules are normalizing:
 - If \(a\) is closed and there is a normal form \(b\) such that \(a \rightarrow^* b\), then \(a \rightarrow^d\) for some \(d\)

Eager Operational Semantics

\[
(\lambda x.e_1) \rightarrow^e (\lambda x.e_1)
\]
\[
e_1 \rightarrow^e \lambda x.e \ e_2 \rightarrow^e e' \ e[e_2|x] \rightarrow^e e''
\]
\[
e_1 \ e_2 \rightarrow^e e''
\]
- This big-step semantics is also deterministic and and does not reduce under \(\lambda\)
- But it is not normalizing
 - Example: \(\text{let } x = \Delta \Delta \text{ in } (\lambda y.y)\)
Lazy vs. Eager in Practice

- Lazy evaluation (call by name, call by need)
 - Has some nice theoretical properties
 - Terminates more often
 - Lets you play some tricks with "infinite" objects
 - Main example: Haskell

- Eager evaluation (call by value)
 - Is generally easier to implement efficiently
 - Blends more easily with side effects
 - Main examples: Most languages (C, Java, ML, etc.)

Functional Programming

- The λ calculus is a prototypical functional programming language:
 - Lots of higher-order functions
 - No side-effects

- In practice, many functional programming languages are "impure" and permit side-effects
 - But you’re supposed to avoid using them

Functional Programming Today

- Two main camps:
 - Haskell – Pure, lazy functional language; no side effects
 - ML (SML/NJ, OCaml) – Call-by-value, with side effects

- Still around: LISP, Scheme
 - Disadvantage/advantage: No static type systems

Call-by-Name Example

OCaml

```ocaml
let cond p x y = if p then x else y
let rec loop () = loop ()
let z = cond true 42 (loop ()
```

Haskell

```haskell
cond p x y = if p then x else y
loop () = loop ()
z = cond True 42 (loop ()
```

Two Cool Things to Do with CBN

- Build control structures with functions

  ```
  cond p x y = if p then x else y
  ```

- “Infinite” data structures

  ```
  integers n = n:integers (n+1)
take 10 (integers 0) (* infinite loop in cbv *)
  ```