Motivation

- Data flow analysis needs to represent facts at every program point

- What if
 - There are a lot of facts and
 - There are a lot of program points?
 - \(\implies \text{potentially takes a lot of space/time} \)

- Most likely, we’re keeping track of irrelevant facts

Sparse Representation

- Instead, we’d like to use a sparse representation
 - Only propagate facts about \(x \) where they’re needed

- Enter static single assignment form
 - Each variable is defined (assigned to) exactly once
 - But may be used multiple times

Example: SSA

- Add SSA edges from definitions to uses
 - No intervening statements use/define variable
 - Safe to propagate only along SSA edges

What About Joins?

- Add \(\Phi \) functions/nodes to model joins
 - Intuitively, takes meet of arguments
 - At code generation time, need to eliminate \(\Phi \) nodes
Constant Propagation Revisited

- Initialize facts at each program point
 - C(n) := top
- Add all SSA edges to the worklist
- While the worklist isn’t empty,
 - Remove an edge (x, y) from the worklist
 - C(y) := C(y) meet C(x)
 - Add SSA edges from y if C(y) changed

Def-Use Chains vs. SSA

- Alternative: Don’t do renaming; instead, compute simple def-use chains (reaching definitions)
 - Propagate facts along def-use chains
- Drawback: Potentially quadratic size

Def-Use Chains vs. SSA (cont’d)

Conditionl Constant Propagation

- So far, we assume that all branches can be taken
 - But what if some branches are never taken in practice?
 - Debugging code that can be enabled/disabled at run time
 - Macro expanded code with constants
 - Optimizations
- Idea: use constant propagation to decide which branches might be taken
 - Fits in neatly with SSA form

Nodes versus Edges

- So far, we’ve been hazy about whether data flow facts are associated with nodes or edges
 - Advantage of nodes: may be fewer of them
 - Advantage of edges: can trace differences on multiple paths to same node
- For this problem, we’ll associate facts with edges

Conditional Execution

- Keep track of whether edges may be executed
 - Some may not be because they’re on not-taken branch
 - Initially, assume no edges taken
 - At joins, don’t propagate information from not-taken in-edges
- Side comment: Notice that we always, always start with the optimistic assumption
 - We need proof that a pessimistic fact holds
 - We’re computing a greatest fixpoint
Example

\[x_1 = 3 \]
\[x_1 > 2 \]
\[j_1 := 1 \]
\[j_2 := 4 \]
\[j_3 := \Phi(j_1, j_2) \]

Computing SSA Form

- Step 1: Compute the dominance frontier
- Step 2: Use dominance frontier to place \(\Phi \) nodes
 - Naive, impractical step 2: put a \(\Phi \) function for every variable at the beginning of every block
 - Better: If node \(X \) contains assignment to \(a \), put \(\Phi \) function for \(a \) in dominance frontier of \(X \)
 - Adding \(\Phi \) fn may require introducing additional \(\Phi \) fn
- Step 3: Rename variables so only one definition per name

Dominator Tree

- The dominator relationship forms a tree
 - Edge from parent to child = parent dominates child
 - Note: edges are not same as CFG edges!

Why Are Dominators Useful?

- Computing static single assignment form
- Computing control dependencies
- Identify loops in CFG
 - All nodes \(X \) dominated by entry node \(H \), where \(X \) can reach \(H \), and there is exactly one back edge (head dominates tail) in loop

Computing Dominator Tree

- Standard algorithm due to Lengauer and Tarjan
 - Runs in time \(O(E \alpha(E, N)) \)
 - \(E \) = # of edges, \(N \) = # of nodes
 - where \(\alpha(\cdot) \) is the inverse Ackerman's function
 - Very slow growing; effectively constant in practice
 - Algorithm quite difficult to understand
 - But lots of pseudo-code available

Dominators

- Let \(X \) and \(Y \) be nodes in the CFG
 - Assume single entry point \(\text{Entry} \)
 - \(X \) dominates \(Y \) (written \(X \geq Y \)) if
 - \(X \) appears on every path from \(\text{Entry} \) to \(Y \)
 - Write \(X > Y \) when \(X \) dominates \(Y \) but \(X \neq Y \)
 - Note \(\geq \) is reflexive

Why Are Dominators Useful?
Where do Φ Functions Go?

- We need a Φ function at node Z if
 - Two non-null CFG paths that both define v
 - Such that both paths start at two distinct nodes and end at Z

Dominance Frontiers: Illustration

- **Dominance Frontier of X**
 - Dominated by X

Dominance Frontiers

- Y is in the dominance frontier of X iff
 - There exists a path from X to Exit through Y such that Y is the first node not strictly dominated by X
 - Equivalently: Y is the first node where a path from X to Exit and a path from Entry to Exit (not going through X) meet
 - Equivalently: X dominates a predecessor of Y
 - X does not strictly dominate Y

Computing Dominance Frontiers

- Two components to DF(X):
 - \(DF_{local}(X) = \{Y \in succ(X) | X \not\lessdot Y\}\)
 - Any child of X not (strictly) dominated by X is in DF(X)
 - \(DF_{up}(Z) = \{Y \in DF(Z) | X \not\lessdot Y\}\)
 - Nodes from DF(Z) that are not strictly dominated by X are also in DF(X)
 - Let Z be such that idom(Z) = X
 - idom(Z) is the parent of Z in the dominator tree

Example

- DF(1) = \{1\}
- DF(2) = \{7\}
- DF(3) = \{6\}
- DF(4) = \{6\}
- DF(5) = \{1, 7\}
- DF(6) = \{7\}
- DF(7) = \Ø

Why Is This Sufficient?

- Suppose \(Y \in DF(X)\)
 - Then there is a \(U \in pred(Y)\) such that \(X \leq U, X \not\lessdot Y\)
 - If \(U=X\), then \(U \in DF_{local}(X) = \{Y \in succ(X) | X \not\lessdot Y\}\)
 - Let Z be such that idom(Z) = X
 - idom(Z) is the parent of Z in the dominator tree
 - Otherwise \(U \neq X\)
 - Then there is a node \(Z\) such that idom(Z) = X and \(Z \leq U\)
 - Possibly \(Z = U\)
 - Since \(X \not\lessdot Y\) and \(Z \not\lessdot X\), hence \(Y \in DF(Z)\)
 - Therefore \(Y \in DF_{up}(Z) = \{Y \in DF(Z) | X \not\lessdot Y\}\)
Algorithm

- Let $sdom(X) = \{Y \mid X > Y\}$
- In a postorder traversal on dominator tree
 - $DF(X) = succ(X) - sdom(X)$
 - i.e., $DF(X) = DF_{local}(X)$
 - For each Z such that $idom(Z) = X$ do
 - $DF(X) = DF(X) - DF(Z)$
 - i.e., $DF(X) = DF(X) - sdom(X)$

Equivalent Algorithm

- In a postorder traversal on dominator tree
 - $DF(X) = succ(X)$
 - For each Z such that $idom(Z) = X$ do
 - $DF(X) = DF(X)$
 - $DF(X) = DF(X) - sdom(X)$
- There's another equivalent algorithm that runs in $O(E + |DF|)$

Computing SSA Form

- Step 1: Compute the dominance frontier
- Step 2: Use dominance frontier to place Φ nodes
- Step 3: Rename variables so only one definition per name

Step 2: Placing Φ Functions for v

- Let S be the set of nodes that define v
- Need to place Φ function in every node in $DF(S)$
 - Recall, those are all the places where the definition of v in S and some other definition of v may meet
 - But a Φ function adds another definition of v!
 - $v := \Phi(v, ..., v)$
 - So, iterate
 - $DF_1 = DF(S)$
 - $DF_{i+1} = DF(S \cup DF_i)$

Step 3: Renaming Variables

- Top-down (DFS) traversal of dominator tree
 - At definition of v, push new $#$ for v onto the stack
 - When leaving node with definition of v, pop stack
 - Intuitively: Works because there's a Φ function, hence a new definition of v, just beyond region dominated by definition
 - Can be done in $O(E + |DF|)$ time
 - Linear in size of CFG with Φ functions

Example
Eliminating Φ Functions

- Basic idea: Φ represents facts that value of join may come from different paths
 - So just set along each possible path

$w_2 := y_1 + z_1$ $w_3 := w_1 + y_3$
$w_4 := w_2$ $w_4 := w_3$
z

Efficiency in Practice

- Claimed:
 - SSA grows linearly with size of program
 - No correlation between ratio and program size

<table>
<thead>
<tr>
<th>Package name</th>
<th>Statements in all procedures</th>
<th>Statements per procedure</th>
<th>Min</th>
<th>Median</th>
<th>Max</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>KBPACK</td>
<td>7,054</td>
<td>23</td>
<td>89</td>
<td>157</td>
<td></td>
<td>Tense matrix eigenproblem and values</td>
</tr>
<tr>
<td>FLOP2</td>
<td>5,654</td>
<td>9</td>
<td>54</td>
<td>163</td>
<td></td>
<td>Flow past an airflow</td>
</tr>
<tr>
<td>APPICE</td>
<td>14,683</td>
<td>8</td>
<td>43</td>
<td>755</td>
<td></td>
<td>Circuit simulation</td>
</tr>
<tr>
<td>Totals</td>
<td>23,191</td>
<td>8</td>
<td>66</td>
<td>150</td>
<td>213</td>
<td>213 FORTRAN procedures</td>
</tr>
</tbody>
</table>

Eliminating Φ Functions in Practice

- Copies performed at Φ fns may not be useful
 - Joined value may not be used later in the program
 - (So why leave it in?)

- Use dead code elimination to kill useless Φs

- Subsequent register allocation will map the (now very large) number of variables onto the actual set of machine register

Arrays

- Need to handle array accesses

- Problem: How do we know whether $A[i], A[j],$ and $B[k]$ are all distinct?
 - Could have $A=B$, e.g., $\text{foo}(\text{int } A[], \text{int } B[])$... $\text{foo}(a,a)$
 - Could have $i=j$

- History: significant research on determining array dependencies, for parallelizing compilers

Arrays (cont’d)

- One possibility: make arrays immutable
 - Then don’t need to worry about updates to them

 $*:= A(i);$

 $A(i) := V;$

 $*:= A(k);$

 $*:= T + 2;$

- $\text{Update}(A, j, V)$ makes a copy of A
 - Then try to collapse unnecessary copies

Efficiency in Practice (cont’d)

- Convincing?
Structures

- Can treat structures as sets of variables

 \[
 * := A.f; \\
 A.g := V; \\
 * := A.f + A.g \\
 * := X; \quad \text{// } X = A.f \\
 Y := V; \quad \text{// } Y = A.g \\
 * := X + Y
 \]

- Problems?

Pointers

- For each statement \(S \), let

 - \(\text{MustMod}(S) = \text{variables always modified by } S \)
 - \(\text{MayMod}(S) = \text{variables sometimes modified by } S \)
 - So if \(v \notin \text{MayMod}(S) \), then \(S \) must not modify \(v \)
 - \(\text{MayUse}(S) = \text{variables sometimes used by } S \)
 - Then assume that statement \(S \)
 - writes to \(\text{MayMod}(S) \)
 - reads \(\text{MayUse}(S) \cup (\text{MayMod}(S) - \text{MustMod}(S)) \)
 - Convincing? We'll talk more about pointers later in the course

Control Dependence

- \(Y \) is control dependent on \(X \) if whether \(Y \) is executed depends on a test at \(X \)

 \[
 X \leftarrow A \leftarrow B \rightarrow C
 \]

- \(A, B, \) and \(C \) are control dependent on \(X \)

Postdominators and Control Dependence

- \(Y \) postdominates \(X \) if every path from \(X \) to Exit contains \(Y \)
 - I.e., if \(X \) is executed, then \(Y \) is always executed
 - Then, \(Y \) is control dependent on \(X \) if
 - There is a path \(X \rightarrow Z_1 \rightarrow \cdots \rightarrow Z_n \rightarrow Y \) such that \(Y \) postdominates all \(Z_i \)
 - \(Y \) does not postdominate \(X \)
 - I.e., there is some path from \(X \) on which \(Y \) is always executed, and there is some path on which \(Y \) is not executed

Dominance Frontiers, Take 2

- Postdominators are just dominators on the CFG with the edges reversed
 - To see what \(Y \) is control dependent on, we want to find the \(X \)s such that in the reverse CFG
 - There is a path \(X \leftarrow Z_1 \leftarrow \cdots \leftarrow Z_n \leftarrow Y \) where
 - for all \(i, Y \geq Z_i \)
 - \(Y \neq X \)
 - I.e., we want to find \(\text{DF}(Y) \) in the reverse CFG!