Lecture 39: Searching

Last time:
1. Overloading and overriding revisited
2. Interfaces and class inheritance
3. Interface hierarchies

Today:
1. Project #8 assigned!
2. Course Reviews
3. Linear search
4. Binary search
5. Time complexity analysis
Project #8 Assigned!

- Project due 5/10 at 11pm
- Project is open
- Start before now!
 - Read entire assignment from beginning to end before starting to code
 - Check out assignment now from CVS
 - Follow the instructions *exactly*, as much of grading is automated
Course reviews

- www.courses.umd.edu/online_evaluation/

- IMPORTANT: Please fill this out for your instructor/professor AND for your TA’s (There are two different online evaluations for you to fill out.)
Searching

● A basic operation in computer science
● Problem formulation
 ● Given:
 ● Collection (array) of values
 ● A property on values
 ● Find: a value having the property in the array
● Examples
 ● Find a particular element
 ● Find the least element
● We will study different algorithms for solving this problem
The Search Game

- Pick an element in the range 0 … 1,023
- How long does it take to guess?
 - This is a search problem
 - The collection: numbers 0 … 1,023
 - The “property”: number chosen by the other party
The Search Game: Linear Search

- Start at 0
- Guess until you find the element!
 - Answer to guess is “yes / no”
 - Next guess is one more than previous guess
 - How long will it take?
- This kind of algorithm is called linear search
Implementing Linear Search

- Given: String array, String
- Return: index of String in array, if String is in array, or -1 if String is not in array

```java
public static int linSearch (String[] a, String elt) {
    for (int i = 0; i < a.length; i++)
        if (elt.equals(a[i])) return i;
    return -1; // return -1 if elt is not in a
}
```
The Search Game Revised: Binary Search

- Remember lower, upper bound
- Guess middle element
 - Answer is “yes / higher / lower”
 - If “higher”, adjust lower bound
 - If “lower”, adjust higher bound
 - How long does it take?
- This kind of algorithm is called **binary search**
Implementing Binary Search

- **Given:** Sorted String array, String
- **Return:** index of String in array, if String is in array, or -1 if String is not in array

```java
public static int binSearch (String[] a, String elt) {
    int lower = 0; // First possible position of elt
    int upper = a.length; // First impossible position of elt
    int middle; // Middle position between lower, upper
    while (lower < upper) {
        middle = (lower + upper) / 2;
        if (elt.compareTo(a[middle]) == 0)
            return middle;
        else if (elt.compareTo(a[middle]) < 0)
            upper = middle;
        else
            lower = middle+1;
    }
    return -1; // Element not found
}
```
Which Search Is Better?

- For linear search: no need for sorted array
- For binary search: *faster* … or is it?
- How many guesses needed in search game (worst case) for
 - Linear search?
 - Binary search?
Answers

- For linear search: 1,024
 - Number chosen may be 1,023
 - This would require each number to be guessed
- For binary search: 10 (wow!)
 - Each guess rules out half of the remaining possibilities
 - Total number of possibilities: 1,024
 - This can be cut in half at most 10 times
Search Game Continued

- Suppose number of possible values is n: 0, 1, … $n-1$.

- How many guesses needed in worst case for:
 - Linear search?
 - Binary search?
Answers

- Linear search: n
- Binary search: $\log_2 n$
 - $\log_2 n =$ number of times n can be cut in half
 - $\log_{10} n =$ number of times n can be divided by 10
Number of Guesses as n Grows

guesses

- linSearch
- binSearch

n
Linear Search: As data size n grows, doubling the data doubles the runtime

- Run time for linear search: $T(n) = an + b$, where n is the data size
- Prove: $\lim_{n \to \infty} T(2n) / T(n) = 2$
- Proof:
 - So we must show:
 - $\lim_{n \to \infty} a(2n) + b / an + b = 2$
 - In taking limit, constants (b) drop out, so we must show:
 - $\lim_{n \to \infty} a(2n) / an = 2$
 - Take quotient of coefficients on LHS and cancel out a:
 - $\lim_{n \to \infty} a(2) / a = \lim_{n \to \infty} 2 = 2$
 - Thus, as data size n grows, the runtime doubles
- Example: $T(n) = n/2$

<table>
<thead>
<tr>
<th>n</th>
<th>$T(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>32</td>
</tr>
<tr>
<td>128</td>
<td>64</td>
</tr>
<tr>
<td>256</td>
<td>128</td>
</tr>
<tr>
<td>n</td>
<td>$n/2$</td>
</tr>
</tbody>
</table>
Binary Search: As data size \(n \) grows, doubling the data yields runtimes that increment by a **constant amount**

- Run time for binary search: \(T(n) = a \log_b cn + d \), where \(n \) is the data size
- Prove: \(\lim_{n \to \infty} T(2n) = T(n) + k \), where \(k \) is a constant
- Proof:
 - First, note that \(T(n) = a \log_b cn + d \) and \(T(2n) = a \log_b c(2n) + d \)
 - Next, examine \(T(2n) \) more closely:
 - \(T(2n) = a \log_b c(2n) + d \)
 - \(= a \log_b 2(cn) + d \)
 - \(= a[\log_b 2 + \log_b (cn)] + d \)
 - \(= a \log_b 2 + a \log_b (cn) + d \)
 - \(= a \log_b 2 + [a \log_b (cn) + d] \)
 - \(= a \log_b 2 + T(n) \)
 - Since \(\log_b 2 \) is simply a constant, we can set \(k = a \log_b 2 \)
 - So \(\lim_{n \to \infty} T(2n) = T(n) + k \), where \(k \) is a constant
- Note that this means each time we double the data size, the runtime increases by the same constant value \(k \)!
- Example: \(T(n) = \log_2 n \)

<table>
<thead>
<tr>
<th>(n)</th>
<th>(T(n))</th>
<th>Increments by 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>256</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

CMSC 131 Spring 2007
Bonnie Dorr (adapted from Rance Cleaveland)
Categories of Algorithms

- We say:
 - “Linear Search is $\theta(n)$”
 - “Binary Search is $\theta(\log_2 n)$

- $\theta(1)$
 - $\theta(\log (\log n))$
 - $\theta(\log n)$
 - $\theta(\log n * \log n)$
 - $\theta(n)$
 - $\theta(n \log n)$
 - $\theta(n \log (\log n))$
 - $\theta(n \log n * \log n)$
 - $\theta(n^{1.1})$
 - $\theta(n^2)$
 - $\theta(n^{100000000})$

- $\theta(2^n)$
- $\theta(3^n)$
- $\theta(3.05^n)$
- $\theta(4^n)$
- $\theta(n!)$
- $\theta(n^n)$

Huge chasm between polynomial and exponential
Big-O?

- So what, then, is “Big-O”?
- If we have a function that is $O(n^2)$, then the function is NO WORSE than $\Theta(n^2)$.
- It might even be BETTER than $\Theta(n^2)$, e.g., $\Theta(n \log n)$ or $\Theta(n)$.
- If an algorithm is $\Theta(n^2)$, we say it is $O(n^2)$, $O(n^3)$, $O(n^4)$, ...
“Asymptotic Worst-Case Time Complexity”

- Asymptotic = “as n gets large”
- Worst-case = “how many guesses in the worst case?”
- Time complexity = “how much ‘time’ is consumed?”
 - Giving accurate “to-the-millisecond” characterizations not possible because algorithms can run on different computers
 - Time complexity instead refers to “number of basic operations”
 - Basic operation for search game = guess
- If n is a number, then f(n) is a function on that number (e.g. f(n) = 3n).
 - If an algorithm has worst-case processing time of f(n) for input size is n, then it is said to have asymptotic worst-case time complexity $O(f(n))$ (“big-oh of f(n)”)
Analyzing Asymptotic Worst-Case Time Complexity: Code

```java
public static int linSearch (String[] a, String elt) {
    for (int i = 0; i < a.length; i++)
        if (elt.equals(a[i])) return i;
    return -1; // return -1 if elt is not in a
}
```

- Analysis based on coarse assumptions
 - Comparisons are “one operation”
 - Assignments are one operation
- What about `linSearch`?
 - Loop executes n times, where n is number of elements in `a`
 - Each loop iteration:
 - Comparison involving `i`
 - Comparison involving `elt, a[i]`
 - One assignment to `i`
 - So three operations per loop iteration
 - So worst-case time complexity is: O(3n)
- By convention, constants omitted, so O(n)
What about binSearch?

public static int binSearch (String[] a, String elt) {
 int lower = 0; // First possible position of elt
 int upper = a.length; // First impossible position of elt
 int middle; // Middle position between lower, upper
 while (lower < upper) {
 middle = (lower + upper) / 2;
 if (elt.compareTo(a[middle]) == 0)
 return middle;
 else if (elt.compareTo(a[middle]) < 0)
 upper = middle;
 else
 lower = middle + 1;
 }
 return -1; // Element not found
}

● Loop iteration analysis
 ● One assignment to middle
 ● One assignment to lower or upper (not both!)
 ● Three comparisons
 ● So five operations / iteration

● How many iterations of loop in worst case?
 ● Each iteration: half of possible values discarded
 ● So: log₂n
● Thus binSearch code is O(5 log₂n) = O(log₂n)