CMSC 132: Object-Oriented Programming II

Algorithmic Complexity I

Department of Computer Science
University of Maryland, College Park
Algorithm Efficiency

Efficiency
- Amount of resources used by algorithm
 - Time, space

Measuring efficiency
- Benchmarking
- Asymptotic analysis
Benchmarking

Approach
- Pick some desired inputs
- Actually run implementation of algorithm
- Measure time & space needed

Industry benchmarks
- SPEC – CPU performance
- MySQL – Database applications
- WinStone – Windows PC applications
- MediaBench – Multimedia applications
- Linpack – Numerical scientific applications
Benchmarking

Advantages
- Precise information for given configuration
 - Implementation, hardware, inputs

Disadvantages
- Affected by configuration
 - Data sets (usually too small)
 - Hardware
 - Software
- Affected by special cases (biased inputs)
- Does not measure intrinsic efficiency
Asymptotic Analysis

Approach
- Mathematically analyze efficiency
- Calculate time as function of input size n
 - $T \approx O[f(n)]$
 - T is on the order of $f(n)$
 - “Big O” notation

Advantages
- Measures intrinsic efficiency
- Dominates efficiency for large input sizes
Search Example

Number guessing game

- Pick a number between 1…n
- Guess a number
- Answer “correct”, “too high”, “too low”
- Repeat guesses until correct number guessed
Linear Search Algorithm

Algorithm
1. Guess number = 1
2. If incorrect, increment guess by 1
3. Repeat until correct

Example
- Given number between 1…100
- Pick 20
- Guess sequence = 1, 2, 3, 4 … 20
- Required 20 guesses
Linear Search Algorithm

Analysis of # of guesses needed for 1…n
- If number = 1, requires 1 guess
- If number = n, requires n guesses
- On average, needs n/2 guesses
- Time = O(n) = Linear time
Binary Search Algorithm

Algorithm

- Set Δ to $n/4$
- Guess number = $n/2$
- If too large, guess number $- \Delta$
- If too small, guess number $+ \Delta$
- Reduce Δ by $\frac{1}{2}$
- Repeat until correct
Binary Search Algorithm

Example

- Given number between 1…100
- Pick 20
- Guesses =
 - 50, $\Delta = 25$, Answer = too large, subtract Δ
 - 25, $\Delta = 12$, Answer = too large, subtract Δ
 - 13, $\Delta = 6$, Answer = too small, add Δ
 - 19, $\Delta = 3$, Answer = too small, add Δ
 - 22, $\Delta = 1$, Answer = too large, subtract Δ
 - 21, $\Delta = 1$, Answer = too large, subtract Δ
 - 20
- Required 7 guesses
Binary Search Algorithm

Analysis of # of guesses needed for 1…n

- If number = n/2, requires 1 guess
- If number = 1, requires log₂(n) guesses
- If number = n, requires log₂(n) guesses
- On average, needs log₂(n) guesses
- Time = O(log₂(n)) = Log time
Search Comparison

For number between 1…100
- Simple algorithm = 50 steps
- Binary search algorithm = $\log_2(n) = 7$ steps

For number between 1…100,000
- Simple algorithm = 50,000 steps
- Binary search algorithm = $\log_2(n)$ (about 17 steps)

Binary search is much more efficient!
Asymptotic Complexity

Comparing two linear functions

<table>
<thead>
<tr>
<th>Size</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n/2</td>
</tr>
<tr>
<td>64</td>
<td>32</td>
</tr>
<tr>
<td>128</td>
<td>64</td>
</tr>
<tr>
<td>256</td>
<td>128</td>
</tr>
<tr>
<td>512</td>
<td>256</td>
</tr>
</tbody>
</table>
Asymptotic Complexity

- Comparing two functions
 - $n/2$ and $4n+3$ behave similarly
 - Run time roughly doubles as input size doubles
 - Run time increases linearly with input size

- For large values of n
 - $\frac{\text{Time}(2n)}{\text{Time}(n)}$ approaches exactly 2

- Both are $O(n)$ programs
Asymptotic Complexity

Comparing two log functions

<table>
<thead>
<tr>
<th>Size</th>
<th>Running Time</th>
<th>(\log_2(n))</th>
<th>(5 \times \log_2(n) + 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>6</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>7</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>256</td>
<td>8</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>512</td>
<td>9</td>
<td>48</td>
<td></td>
</tr>
</tbody>
</table>
Asymptotic Complexity

- Comparing two functions
 - \(\log_2(n) \) and \(5 \cdot \log_2(n) + 3 \) behave similarly
 - Run time roughly increases by constant as input size doubles
 - Run time increases logarithmically with input size

- For large values of \(n \)
 - \(\text{Time}(2n) - \text{Time}(n) \) approaches constant
 - Base of logarithm does not matter
 - Simply a multiplicative factor
 \[\log_a N = \left(\frac{\log_b N}{\log_b a} \right) \]
 - Both are \(O(\log(n)) \) programs
Asymptotic Complexity

Comparing two quadratic functions

<table>
<thead>
<tr>
<th>Size</th>
<th>n^2</th>
<th>$2n^2 + 8$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>40</td>
</tr>
<tr>
<td>8</td>
<td>64</td>
<td>132</td>
</tr>
<tr>
<td>16</td>
<td>256</td>
<td>520</td>
</tr>
</tbody>
</table>
Asymptotic Complexity

Comparing two functions
- \(n^2 \) and \(2n^2 + 8 \) behave similarly
- Run time roughly increases by 4 as input size doubles
- Run time increases quadratically with input size

For large values of \(n \)
- \(\frac{\text{Time}(2n)}{\text{Time}(n)} \) approaches 4

Both are \(O(n^2) \) programs
Big-O Notation

- **Represents**
 - Upper bound on number of steps in algorithm
 - For sufficiently large input size
 - Intrinsic efficiency of algorithm for large inputs

![Graph showing # steps vs input size with O(...) and f(n) curves](image)
Formal Definition of Big-O

Function $f(n)$ is $O(\ g(n) \)$ if

- For some positive constants M, N_0
- $M \times g(n) \geq f(n)$, for all $n \geq N_0$

Intuitively

- For some coefficient M & all data sizes $\geq N_0$
 - $M \times g(n)$ is always greater than $f(n)$
Big-O Examples

5n + 1000 ⇒ O(n)

- Select M = 6, N₀ = 1000
- For n ≥ 1000
 - 6n ≥ 5n + 1000 is always true
- Example ⇒ for n = 1000
 - 6000 ≥ 5000 + 1000
Big-O Examples

2n^2 + 10n + 1000 ⇒ O(n^2)

- Select M = 4, N_0 = 100
- For n ≥ 100
 - 4n^2 ≥ 2n^2 + 10n + 1000 is always true
- Example ⇒ for n = 100
 - 40000 ≥ 20000 + 1000 + 1000
Observations

- **Big O categories**
 - $O(\log(n))$
 - $O(n)$
 - $O(n^2)$

- **For large values of n**
 - Any $O(\log(n))$ algorithm is faster than $O(n)$
 - Any $O(n)$ algorithm is faster than $O(n^2)$

- Asymptotic complexity is fundamental measure of efficiency
Comparison of Complexity

A Comparison of Orders

\[f(x) \]

- \(n \)
- \(\frac{1}{2} n^2 \)
- \(n^3 \)
Complexity Category Example

The diagram illustrates the relationship between problem size and the number of solution steps for different complexity categories. The categories include:

- 2^n (purple asterisks)
- n^2 (blue crosses)
- $n \log(n)$ (red triangles)
- n (green squares)
- $\log(n)$ (black diamonds)

Table

<table>
<thead>
<tr>
<th>Problem Size</th>
<th># of Solution Steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>25</td>
</tr>
<tr>
<td>5</td>
<td>50</td>
</tr>
<tr>
<td>6</td>
<td>100</td>
</tr>
<tr>
<td>7</td>
<td>250</td>
</tr>
</tbody>
</table>

Graph

The graph shows exponential growth for 2^n and quadratic growth for n^2, with $n \log(n)$ showing linear growth, and n and $\log(n)$ showing slower growth with increasing problem size.
Complexity Category Example

![Graph showing the relationship between problem size and the number of solution steps for different complexity categories.

- 2^n (purple stars)
- n^2 (blue crosses)
- $n \log(n)$ (red triangles)
- n (pink squares)
- $\log(n)$ (blue diamonds)

The x-axis represents the problem size, ranging from 1 to 7. The y-axis represents the number of solution steps, with a logarithmic scale ranging from 1 to 1000. Each complexity category is represented by a different marker and line style, allowing for a clear comparison of how each category grows with increasing problem size.]
Calculating Asymptotic Complexity

As \(n \) increases
- Highest complexity term dominates
- Can ignore lower complexity terms

Examples
- \(2n + 100 \Rightarrow O(n) \)
- \(n \log(n) + 10n \Rightarrow O(n \log(n)) \)
- \(\frac{1}{2}n^2 + 100n \Rightarrow O(n^2) \)
- \(n^3 + 100n^2 \Rightarrow O(n^3) \)
- \(\frac{1}{100}2^n + 100n^4 \Rightarrow O(2^n) \)
Complexity Examples

2n + 100 \Rightarrow O(n)
Complexity Examples

\(\frac{1}{2} n \log(n) + 10 n \Rightarrow O(n\log(n)) \)
Complexity Examples

\[\frac{1}{2} n^2 + 100 n \Rightarrow O(n^2) \]
Complexity Examples

1/100 \(2^n + 100 \ n^4 \Rightarrow O(2^n)\)
Types of Case Analysis

- Can analyze different types (cases) of algorithm behavior

Types of analysis

- Best case
- Worst case
- Average case
- Amortized
Types of Case Analysis

Best case

- Smallest number of steps required
- Not very useful
- Example ⇒ Find item in first place checked
Types of Case Analysis

- **Worst case**
 - Largest number of steps required
 - Useful for upper bound on worst performance
 - Real-time applications (e.g., multimedia)
 - Quality of service guarantee
 - Example ⇒ Find item in last place checked
Quicksort Example

Quicksort
- One of the fastest comparison sorts
- Frequently used in practice

Quicksort algorithm
- Pick pivot value from list
- Partition list into values smaller & bigger than pivot
- Recursively sort both lists
Quicksort Example

Quicksort properties
- Average case = $O(n\log(n))$
- Worst case = $O(n^2)$
 - Pivot \approx smallest / largest value in list
 - Picking from front of nearly sorted list

Can avoid worst-case behavior
- Select random pivot value
Types of Case Analysis

- **Average case**
 - Number of steps required for “typical” case
 - Most useful metric in practice
 - Different approaches
 - Average case
 - Expected case
Approaches to Average Case

Average case
- **Average over all possible inputs**
 - Assumes all inputs have the same probability
- **Example**
 - Case 1 = 10 steps, Case 2 = 20 steps
 - Average = 15 steps

Expected case
- **Weighted average over all possible inputs**
 - Based on probability of each input
- **Example**
 - Case 1 (90%) = 10 steps, Case 2 (10%) = 20 steps
 - Average = 11 steps
Average Case Example

Example problem

- **Average # of comparisons needed to find a number in the (sorted) array** $A[] = \{1, 4, 8, 12, 15\}$ **using**

 1. **Linear search**
 - Start from beginning, compare elements one at a time

 2. **Binary search**
 - Start from middle of array at index k, compare element
 - If not element, repeat for top or bottom half of remaining array depending on whether element is smaller or greater than $A[k]$
Average Case : Linear Search

Algorithm

1. Find # of comparisons needed for each case

- 1 → 1 comparison (1)
- 4 → 2 comparisons (1, 4)
- 8 → 3 comparisons (1, 4, 8)
- 12 → 4 comparisons (1, 4, 8, 12)
- 15 → 5 comparisons (1, 4, 8, 12, 15)

2. Calc average = total # of comparisons / # cases

- Total # comparisons = 1 + 2 + 3 + 4 + 5 = 15
- # cases = 5
- Average = 3 comparisons / number
Average Case : Binary Search

Algorithm

1. Find # of comparisons needed for each case
 - 1 → 3 comparisons (8, 4, 1)
 - 4 → 2 comparisons (8, 4)
 - 8 → 1 comparisons (8)
 - 12 → 2 comparisons (8, 12)
 - 15 → 3 comparisons (8, 12, 15)

2. Calc average = total # of comparisons / # cases
 - Total # comparisons = 3 + 2 + 1 + 2 + 3 = 11
 - # cases = 5
 - Average = 2.2 comparisons / number
Average Case Example

Example problem 2

Average # of comparisons needed to find a number in a sorted array A[n] of size n using

1. Linear search
2. Binary search

For simplicity, we assume elements are stored in A[1] ... A[n]
Average Case : Linear Search

Algorithm

1. Find # of comparisons needed for each case
 - ...

2. Calc average = total # of comparisons / # cases
 - Total # comparisons = 1 + 2 + ... + n = \(\frac{1}{2} n^2 + 1 \)
 - # cases = n
 - Average ≈ \(\frac{1}{2} n \) comparisons / number
Average Case : Binary Search

Algorithm

1. Find # of comparisons needed for each case
 - A[n/2] → 1 comp (A[n/2])
 - ...
 - A[1], A[3]...A[n] → $\log_2(n)$ comparisons
 (A[n/2], A[n/4], A[n/8]...A[1])

2. Calc average = total # of comparisons / # cases
 - Total # comparisons = $n/2 \times \log_2(n) + n/4 \times \log_2(n) - 1 + ... + 1 = n \log_2(n)$
 - # cases = n
 - Average ≈ $\log_2(n)$ comparisons / number
Amortized Analysis

Approach

- Applies to worst-case sequences of operations
- Finds average running time per operation

Example

- Normal case = 10 steps
- Every 10th case may require 20 steps
- Amortized time = 11 steps

Assumptions

- Can predict possible sequence of operations
- Know when worst-case operations are needed
 - Does not require knowledge of probability
Amortization Example

Adding numbers to end of array of size k
- If array is full, allocate new array
 - Allocation cost is $O($size of new array$)$
 - Copy over contents of existing array

Two approaches
- Non-amortized
 - If array is full, allocate new array of size $k+1$
- Amortized
 - If array is full, allocate new array of size $2k$
 - Compare their allocation cost
Amortization Example

Non-amortized approach

Allocation cost as table grows from 1..n

<table>
<thead>
<tr>
<th>Size (k)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

Total cost \(\Rightarrow n(n+1)/2 \)

Case analysis

- Best case \(\Rightarrow \) allocation cost = \(k \)
- Worse case \(\Rightarrow \) allocation cost = \(k \)
- Amortized case \(\Rightarrow \) allocation cost = \((n+1)/2 \)
Amortization Example

- **Amortized approach**
 - Allocation cost as table grows from 1..n

<table>
<thead>
<tr>
<th>Size (k)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- Total cost \(\Rightarrow 2 \ (n - 1) \)

- **Case analysis**
 - Best case \(\Rightarrow \) allocation cost = 0
 - Worse case \(\Rightarrow \) allocation cost = \(2(k - 1)\)
 - Amortized case \(\Rightarrow \) allocation cost = 2

- An individual step might take longer, but faster for any sequence of operations