Overview

- Critical sections
- Comparing complexity
- Types of complexity analysis
Analyzing Algorithms

- **Goal**
 - Find asymptotic complexity of algorithm

- **Approach**
 - Ignore less frequently executed parts of algorithm
 - Find critical section of algorithm
 - Determine how many times critical section is executed as function of problem size

Critical Section of Algorithm

- **Heart of algorithm**
- Dominates overall execution time

- **Characteristics**
 - Operation central to functioning of program
 - Contained inside deeply nested loops
 - Executed as often as any other part of algorithm

- **Sources**
 - Loops
 - Recursion
Critical Section Example 1

- Code (for input size n)
 1. A
 2. for (int i = 0; i < n; i++)
 3. B
 4. C

- Code execution
 - A ⇒ once
 - B ⇒ n times
 - C ⇒ once

- Time ⇒ $1 + n + 1 = \mathcal{O}(n)$

Critical Section Example 2

- Code (for input size n)
 1. A
 2. for (int i = 0; i < n; i++)
 3. B
 4. for (int j = 0; j < n; j++)
 5. C
 6. D

- Code execution
 - A ⇒ once
 - B ⇒ n times
 - C ⇒ n^2 times
 - D ⇒ once

- Time ⇒ $1 + n + n^2 + 1 = \mathcal{O}(n^2)$
Critical Section Example 3

Code (for input size n)
1. A
2. for (int i = 0; i < n; i++)
3. for (int j = i+1; j < n; j++)
4. B

Code execution
- A ⇒ once
- B ⇒ \(\frac{1}{2} n \) \(n-1 \) times

Time ⇒ \(1 + \frac{1}{2} n^2 = O(n^2) \)

Critical Section Example 4

Code (for input size n)
1. A
2. for (int i = 0; i < n; i++)
3. for (int j = 0; j < 10000; j++)
4. B

Code execution
- A ⇒ once
- B ⇒ 10000 \(n \) times

Time ⇒ \(1 + 10000 \) \(n \) = O(\(n \))
Critical Section Example 5

- Code (for input size n)
 1. for (int $i = 0; i < n; i++$)
 2. for (int $j = 0; j < n; j++$)
 3. A
 4. for (int $i = 0; i < n; i++$)
 5. for (int $j = 0; j < n; j++$)
 6. B

- Code execution
 - A $\Rightarrow n^2$ times
 - B $\Rightarrow n^2$ times

- Time $\Rightarrow n^2 + n^2 = O(n^2)$

Critical Section Example 6

- Code (for input size n)
 1. $i = 1$
 2. while ($i < n$)
 3. A
 4. $i = 2 \times i$
 5. B

- Code execution
 - A $\Rightarrow \log(n)$ times
 - B $\Rightarrow 1$ times

- Time $\Rightarrow \log(n) + 1 = O(\log(n))$
Critical Section Example 7

Code (for input size n)
1. DoWork (int n)
2. if (n == 1)
3. A
4. else
5. DoWork(n/2)
6. DoWork(n/2)

Code execution
- A ⇒ 1 times
- DoWork(n/2) ⇒ 2 times

Time(1) ⇒ 1 Time(n) = 2 × Time(n/2) + 1

Recursive Algorithms

Definition
- An algorithm that calls itself

Components of a recursive algorithm
1. Base cases
 - Computation with no recursion
2. Recursive cases
 - Recursive calls
 - Combining recursive results
Recursive Algorithm Example

Code (for input size n)

1. DoWork (int n)
2. if ($n == 1$)
3. A
4. else
5. DoWork($n/2$)
6. DoWork($n/2$)

Asymptotic Complexity Categories

<table>
<thead>
<tr>
<th>Complexity</th>
<th>Name</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(1)$</td>
<td>Constant</td>
<td>Array access</td>
</tr>
<tr>
<td>$O(\log(n))$</td>
<td>Logarithmic</td>
<td>Binary search</td>
</tr>
<tr>
<td>$O(n)$</td>
<td>Linear</td>
<td>Largest element</td>
</tr>
<tr>
<td>$O(n \log(n))$</td>
<td>N log N</td>
<td>Optimal sort</td>
</tr>
<tr>
<td>$O(n^2)$</td>
<td>Quadratic</td>
<td>2D Matrix addition</td>
</tr>
<tr>
<td>$O(n^3)$</td>
<td>Cubic</td>
<td>2D Matrix multiply</td>
</tr>
<tr>
<td>$O(n^k)$</td>
<td>Polynomial</td>
<td>Linear programming</td>
</tr>
<tr>
<td>$O(k^n)$</td>
<td>Exponential</td>
<td>Integer programming</td>
</tr>
</tbody>
</table>

From smallest to largest
For size n, constant $k > 1$
Comparing Complexity

- Compare two algorithms
 - \(f(n) \), \(g(n) \)
- Determine which increases at faster rate
 - As problem size \(n \) increases
- Can compare ratio
 - If \(\infty \), \(f() \) is larger
 - If 0, \(g() \) is larger
 - If constant, then same complexity

Complexity Comparison Examples

- \(\log(n) \) vs. \(n^{\frac{1}{2}} \)

 \[
 \lim_{n \to \infty} \frac{f(n)}{g(n)} \quad \lim_{n \to \infty} \frac{\log(n)}{n^{\frac{1}{2}}} \to 0
 \]

- \(1.001^n \) vs. \(n^{1000} \)

 \[
 \lim_{n \to \infty} \frac{f(n)}{g(n)} \quad \lim_{n \to \infty} \frac{1.001^n}{n^{1000}} \to ??
 \]

 Not clear, use L’Hopital’s Rule
Additional Complexity Measures

- **Upper bound**
 - **Big-O** $\Rightarrow O(...)$
 - Represents upper bound on # steps

- **Lower bound**
 - **Big-Omega** $\Rightarrow \Omega(...)$
 - Represents lower bound on # steps

- **Combined bound**
 - **Big-Theta** $\Rightarrow \Theta(...)$
 - Represents combined upper/lower bound on # steps
 - Best possible asymptotic solution

2D Matrix Multiplication Example

- **Problem**
 - $C = A \times B$

- **Lower bound**
 - $\Omega(n^2)$ Required to examine 2D matrix

- **Upper bounds**
 - $O(n^3)$ Basic algorithm
 - $O(n^{2.807})$ Strassen’s algorithm (1969)
 - $O(n^{2.376})$ Coppersmith & Winograd (1987)

- **Improvements still possible (open problem)**
 - Since upper & lower bounds do not match
Additional Complexity Categories

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP</td>
<td>Nondeterministic polynomial time (NP)</td>
</tr>
<tr>
<td>PSPACE</td>
<td>Polynomial space</td>
</tr>
<tr>
<td>EXPSPACE</td>
<td>Exponential space</td>
</tr>
<tr>
<td>Decidable</td>
<td>Can be solved by finite algorithm</td>
</tr>
<tr>
<td>Undecidable</td>
<td>Not solvable by finite algorithm</td>
</tr>
</tbody>
</table>

Mostly of academic interest only
- Quadratic algorithms usually too slow for large data
- Use fast heuristics to provide non-optimal solutions

NP Time Algorithm

- Polynomial solution possible
 - If make correct guesses on how to proceed
- Required for many fundamental problems
 - Boolean satisfiability
 - Traveling salesman problem (TLP)
 - Bin packing
- Key to solving many optimization problems
 - Most efficient trip routes
 - Most efficient schedule for employees
 - Most efficient usage of resources
NP Time Algorithm

Properties of NP
- Can be solved with exponential time
- Not proven to require exponential time
- Currently solve using heuristics

NP-complete problems
- Representative of all NP problems
- Solution can be used to solve any NP problem
- Examples
 - Boolean satisfiability
 - Traveling salesman

P = NP?

Are NP problems solvable in polynomial time?
- Prove $P=NP$
 - Show polynomial time solution exists for any
 NP-complete problem
- Prove $P \neq NP$
 - Show no polynomial-time solution possible
 - The expected answer

Important open problem in computer science
- 1 million prize offered by Clay Math Institute
Algorithmic Complexity Summary

- **Asymptotic complexity**
 - Fundamental measure of efficiency
 - Independent of implementation & computer platform

- **Learned how to**
 - Examine program
 - Find critical sections
 - Calculate complexity of algorithm
 - Compare complexity