Questions?

• Broken hardware
 – Why was it not reported?

• Project Step 3 due next week

• Show and Tell due this Thursday

• PWM circuit
Evaluating your design

• Proceed in a hierarchical manner
 – Sub-system testing
 • Does the hardware design work?
 – Integration testing;
 • Are the different part of the design working together?
 – Specifications testing;
 • Does the application perform as expected (per specifications)
 – Users testing
 • Will users be able to use the system?
 • Does the system fulfill users’ goals

• An iterative approach will lead to best results
Questioning measurements

• Are they reliable?
 – Does the experiment take into account possible variations in measurement?
 • Need for testing a sample of subjects

• Are they valid?
 – Does the experiment reflects target use?
 • Were users typical?
 • Were tasks typical?
 • Was the setting realistic?
 • Was the experience biased?

• Do they make sense?
 – Setting the stage for discovery!
The participant standpoint

• Testing is a distressing experience
 – Pressure to perform
 – Feeling of inadequacy
 – Looking like a fool in front of your peers, your boss,…

(from “Paper Prototyping” by Snyder)
Treating subjects with respect

- Follow human subject protocols
 - Individual test results will be kept confidential
 - Users can stop the test at any time
 - Users are aware (and understand) the monitoring technique
 - Their performance will have not implication on their life
 - Records will be made anonymous
 - Videos

- Use standard informed consent form
 - Especially for quantitative tests
 - Be aware of legal requirements
Ethics: The Stanford prison experiment

• Was it useful?
“…that’s the most valuable kind of information that you can have - and that certainly a society needs it” (Zimbardo)

• Was it ethical?
 – Could we have gather this knowledge by other means?
Conducting a test

• Before the experiment
 – Have them read and sign the consent form
 – Explain the goal of the experiment
 • *In a way accessible to users*
 • *Be careful about the demand characteristic*
 • *Answer questions*

• During the experiment
 – Stay neutral
 • *Never indicate displeasure with users performance*

• After the experiment
 – Debrief users
 • *Inform users about the goal of the experiment*
 – Answer any questions they have
Managing subjects

• Don’t waste users time
 – Use pilot tests to debug experiments, questionnaires, etc…
 – Have everything ready before users show up

• Make users comfortable
 – Keep a relaxed atmosphere
 – Allow for breaks
 – Pace tasks correctly
 – Stop the test if it becomes too unpleasant
Direct observation method

• Observing (and recording) users interacting with the system
 – In lab or in the field
 – For a set of pre-determined tasks or through normal duties
 • Be prepared!

• Excellent at identifying gross design/interface problems

• Three general approaches:
 – simple observation
 – think-aloud
 – constructive interaction
Be prepared!

• Select the correct population
• Set objectives and Tasks
 – Realistic
 – Informative
• Apply for the IRB
 http://www.umresearch.umd.edu/IRB/
• Hardware
 – Computer, video equipment…
• Software
 – Up and running, properly debugged…
• Facilitator
 – Using a checklist might be useful
 – Practice!
Recording observations

• Need a record
 – Further analysis
 – Proofs during discussion

• Techniques
 – Paper and pencil
 • Simple to set up
 – Free form
 – Coding scheme
 • Might be biased
 – Audio/Video recording
 • More accurate
 • Time consuming to analysis
 – Encoding is a time consuming process

From “Observing the user experience” (Kuniavsky)
Coding scheme example

- Tracking activity in the office

<table>
<thead>
<tr>
<th>Time</th>
<th>Desktop activities</th>
<th>Absences</th>
<th>Interruptions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Computer</td>
<td>Desk</td>
<td>Telephone</td>
</tr>
<tr>
<td>9:00</td>
<td>s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:02</td>
<td>e</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:10</td>
<td></td>
<td></td>
<td>s</td>
</tr>
<tr>
<td>9:13</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Simple observation method

• Evaluator observes users interacting
 – Sometime behind a half-silvered mirror

• Drawback
 – No insight into the user decision process or attitude
The think aloud method

• Subjects are asked to say what they are thinking/doing
 – What they believe is happening
 – What they are trying to do
 – Why they took an action

• Widely used in industry

• Drawbacks
 – Awkward/uncomfortable for subject (thinking aloud is not normal!)
 – “Thinking” about it may alter the way people perform their task
 – Hard to talk when they are concentrating on problem
The constructive interaction method

• Two people work together on a task
 – Normal conversation between the two users is monitored
 • removes awkwardness of think-aloud
 – Variant: Co-discovery learning
 • Use semi-knowledgeable “coach” and naive subject together
 • Make naive subject use the interface

• Drawback
 – Need a good team
Debriefing

• Post-observation interviews
 – Questions from your notes
 – Questions from users diary
 – Questions from a video footage

• Very important
 – Avoids erroneous reconstruction
 • *Provide many constructive suggestions*
 – Let participants understand their role in the research process
Example