Notes: Please work on this with your group-mate(s); just submit one writeup per group. Consulting other sources (including the Web) is not allowed. Write your solutions neatly; if you are able to make partial progress by making some additional assumptions, then state these assumptions clearly and submit your partial solution.

1. Recall the construction for \(n \) pairwise independent bits that we saw in class: assume \(n \) is a power of two, and for \(0 \leq i \leq n - 1 \), let \(b_i \) be the \((\log n + 1)\)-bit string obtained by concatenating the bit “1” to the end of the \(\log n \)-bit binary representation of \(i \); now, for a random \((\log n + 1)\)-bit random string \(r \), define each \(X_i \) to be \(b_i \cdot r \mod 2 \).

Prove that these random bits \(X_0, X_1, \ldots, X_{n-1} \) are actually three-wise independent. (7 points)

2. One of the basic results we showed using the probabilistic method was that for all \(n \) large enough (say, \(n \geq 10 \)), there exist \(n \)-vertex graphs \(G \) with no clique or independent set of size more than \(2 \log_2 n \). Given \(n \), develop a deterministic algorithm running in time \(2^{O(\log^2 n)} \) to construct such a graph. (5 points)

3. We have a hash table \(T \) implemented as an array of \(m \) linked lists: each of \(T[0], T[1], \ldots, T[m-1] \) is a pointer to the head of a linked list. To insert an element \(x \) that hashes to \(i \) (for some \(i \in \{0, 1, \ldots, m-1\} \), under some given hash function), we will do the following: do a standard search in the linked list pointed to by \(T[i] \); insert \(x \) at the end of this list iff \(x \) was not found in the list. The traversal of each element of the linked list takes unit time.

Let \(h \) be a random hash function mapping the set \(A = \{0, 1, \ldots, n - 1\} \) to \(B = \{0, 1, \ldots, m - 1\} \), such that each \(h(i) \) is uniformly distributed in \(B \), and that the random variables \(\{h(x) : x \in A\} \) are pairwise independent. Suppose \(a \) distinct elements of \(A \) have been inserted into \(T \) thus far, and that we now want to insert an element \(x \) into \(T \). \(x \) may or may not be one of the \(a \) elements already inserted. What is the worst-case expected running time for inserting \(x \), given the model for traversing \(T \) and measuring running-time from the previous paragraph? (The worst case is over the worst possible choice of the \(a \) elements and \(x \); the expectation is over the random choice of \(h \).) (5 points)

4. Read the first algorithm of the Bar-Yossef et al paper that we studied in class, from www.ee.technion.ac.il/people/zivby/papers/f0/f0.ps. We will assume that you have full familiarity with this algorithm.

Does the paper’s analysis change by much if we use Chebyshev-Cantelli instead of Chebyshev? (3 points)