Bags, Markov Chains, and Random Text Generation

Department of Computer Science
University of Maryland, College Park
Random Text Generation Project

Goal
- Read in text
- Generate similar semi-random text

Approach
1. Build DenseBag to store word frequencies
2. Use DenseBag to build Markov chain
3. Use Markov chain to generate semi-random text
DenseBag

Properties

- Like a Set
- But can contain duplicates

Examples

- \{ 1, 3, 1, 1, 3, 5 \}
- \{ 1, 1, 1, 3, 3, 5 \}
- \{ three 1’s, two 3’s, one 5 \}
- All represent same DenseBag
DenseBag<E> Operations

Operations supported
- Set<E> getUniqueElements()
- int getCount(E e)
- E choose(Random r)

Examples
- Given DenseBag<Integer> x = { 1, 1, 1, 3, 3, 5 };
 - x. getUniqueElements() → { 1, 3, 5 }
 - x. getCount(1) → 3
 - x. choose(r) → 1 (50%), 3 (33%) or 5 (17%)
DenseBag<E> Operations

Efficiency
- Most operations should take $O(1)$
 - If using hashing
- choose(Random r) may take $O(|\text{unique items}|)$

Iterator
- Iterates over all elements
- Order is undefined
Markov Chain

Definition
- A series of states with the **Markov property**
- Where probability of future states depends only upon the present state and not on any past states

Example
- Probability of X going to S_1 or S_2 is independent of whether P_1 or P_2 originally moved to X

Used in
- Statistical machine learning (artificial intelligence)
Application of Markov chain

- Represent probability of word following each word
- Based on actual frequencies found in text

Example

- In the text “a b a c a b a b”
 - Word a is followed by b (75%) or c (25%)
 - Markov chain for words following a

![Markov Chain Diagram](image)
Example

For the text “a b a c a b a b”

Markov chain for entire text
Higher-Order Markov Chain

Application

- Can represent probability of word following each group of words (order-k for k consecutive words)

Example

- In the text “a b a c a b a b”
 - Words b a are followed by b (50%) or c (50%)

Represent with following Markov chain
DenseBag → Markov Chain

- DenseBag can represent state in Markov chain
 - Contains output in proportion to probability

Example

- Markov state transitions
- DenseBag

```
<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>75%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b</td>
<td></td>
<td>25%</td>
</tr>
<tr>
<td></td>
<td>c</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

```
\[ a \xrightarrow{75\%} b, b, b, c \]
```
Markov Text Generation

Approach (for order-n Markov text)

1. Generate higher-order Markov chains
 - Analyze “training” text(s)
2. Represent Markov chains as DenseBags
3. Connect DenseBags
 - To build probabilistic transition table
4. Use transition table to generate text
Handling Start & End of Text

1. Use empty string(s)
 - Start text generation with ""
 - End text if "" generated
 - "" → "a"
 - "","" → "","a"
 - "a" → ""

2. Augment input with <Start> & <End> markers
 - "a b a c" → "<Start> a b a c <End>"
 - Start text generation with <Start>
 - End text if <End> generated