CMSC 132: Object-Oriented Programming II

Minimal Spanning Tree Algorithms

Department of Computer Science
University of Maryland, College Park
Overview

- Spanning trees
- Minimum spanning tree (MST)
 - Prim’s algorithm
 - Kruskal’s algorithm
 - Union-Find
Spanning Tree

Set of edges connecting all nodes in graph
- need $N-1$ edges for N nodes
- no cycles, can be thought of as a tree

Can build tree during traversal

(a) Graph G

(b) Spanning tree T of graph G
Spanning Tree Construction

Recursive algorithm

```
Known = { start }
explore ( start );

void explore (Node X) {
    for each successor Y of X
        if (Y is not in Known)
            Parent[Y] = X
            Add Y to Known
            explore(Y)
}
```
Spanning Tree Construction

Iterative algorithm

Known = { start }
Discovered = { start }
while (Discovered ≠ ∅) {
 take node X out of Discovered
 for each successor Y of X
 if (Y is not in Known)
 Parent[Y] = X
 Add Y to Discovered
 Add Y to Known
}
Breadth & Depth First Spanning Trees

Breadth-first

Depth-first
Depth-First Spanning Tree Example
Breadth-First Spanning Tree Example
Spanning Tree Construction

- Many spanning trees possible
 - Different breadth-first traversals
 - Nodes same distance visited in different order
 - Different depth-first traversals
 - Neighbors of node visited in different order
 - Different traversals yield different spanning trees
Minimum Spanning Tree (MST)

- Spanning tree with minimum total edge weight

(a) Graph G

(b) A spanning tree of cost $C = 43$

(c) A minimum spanning tree of cost $C = 28$
Minimum Spanning Tree (MST)

Possible to have multiple MSTs

- Different spanning trees with same weight

Example applications

- Minimize length of telephone lines for neighborhood
- Minimize distance of airplane routes serving cities
Algorithms for Finding MST

Three well known algorithms

1. Borůvka’s algorithm [1926]
 - For constructing efficient electricity network
 - Rediscovered by Sollin in 1960s

2. Prim’s algorithm [1957]
 - First discovered by Vojtěch Jarník in 1930
 - Similar to Djikstra’s algorithm

3. Kruskal’s algorithm [1956]
 - By Prof. Clyde Kruskal’s uncle
Algorithms for Finding MST

1. Borůvka’s algorithm
 - Add vertices to MST in parallel

2. Prim’s algorithm
 - Add vertices to MST
 - One at a time
 - Closest vertex first

3. Kruskal’s algorithm
 - Add edges to MST
 - One at a time
 - Lightest edge first
Shortest Path – Dijkstra’s Algorithm

S = ∅
P[] = none for all nodes
C[start] = 0, C[] = ∞ for all other nodes
while (not all nodes in S)
 find node K not in S with smallest C[K]
 add K to S
 for each node J not in S adjacent to K
 if (C[K] + cost of (K,J) < C[J])
 C[J] = C[K] + cost of (K,J)
 P[J] = K

Optimal solution computed with greedy algorithm
MST – Prim’s Algorithm

S = ∅
P[] = none for all nodes
C[start] = 0, C[] = ∞ for all other nodes

while (not all nodes in S)
 find node K not in S with smallest C[K]
 add K to S
 for each node J not in S adjacent to K
 if (/* C[K] + */ cost of (K,J) < C[J])
 C[J] = /* C[K] + */ cost of (K,J)
P[J] = K

Keeps track of vertex w/ minimal distance to current tree
Optimal solution computed with greedy algorithm
MST – Kruskal’s Algorithm

sort edges by weight (from least to most)

\[
\text{tree} = \emptyset
\]

for each edge \((X,Y)\) in order

\[
\text{if it does not create a cycle}
\]

\[
\text{add } (X,Y) \text{ to tree}
\]

\[
\text{stop when tree has } N-1 \text{ edges}
\]

Keeps track of

- lightest edge remaining
- whether adding edge to MST creates cycle

Optimal solution computed with greedy algorithm
MST – Kruskal’s Algorithm Example
MST – Kruskal’s Algorithm

When does adding (X,Y) to tree create cycle?

Two approaches to finding cycles
1. Traversal
2. Connected subgraph
MST – Kruskal’s Algorithm

Traversing approach
- Traverse tree starting at X
- If we can reach Y, adding (X,Y) would create cycle

Example
- Question
 - Add (X,Y) to MST?
- Answer
 - No, since can already reach Y from X by traversing MST
MST – Kruskal’s Algorithm

- Connected subgraph approach
 - Maintain set of nodes for each connected subgraph
 - Initialize one connected subgraph for each node
 - If X, Y in same set, adding (X,Y) would create cycle
 - Otherwise
 1. Add edge (X,Y) to spanning tree
 2. Merge sets containing X, Y

- To test set membership
 - Use Union-Find algorithm
MST – Connected Subgraph Example

Original graph

Ordered set of edges:
- \(<A, B>\) 5
- \(<A, C>\) 9
- \(<B, C>\) 13
- \(<C, D>\) 15
- \(<B, D>\) 17

MST

Sets

1. \((A) \{B\} \{C\} \{D\}\)

2. \((A, B) \{C\} \{D\}\)

Edge being considered for addition:
- \(<A, B>\) Include, since it connects two nodes in distinct sets
- \(<A, C>\) Include, since it connects two nodes in distinct sets
MST – Connected Subgraph Example

Ordered set of edges

- <A, B> 5
- <A, C> 9
- <B, C> 13
- <C, D> 15
- <B, D> 17

Sets

3. MST

A
5
B

{A, B, C} {D}

9
C
D

Edge being considered for addition

4.

A
5
B

{A, B, C} {D}

9
C
D

- <B, C> Reject, since it connects nodes in the same set and would create a cycle

5.

A
5
B

{A, B, C, D}

9
C
15
D

- <C, D> Include, since it connects two nodes in distinct sets

Finished
Union-Find Algorithm

Union-Find
- Algorithm & data structure
- Very efficient for testing membership in disjoint sets

Problem description
- Start with n nodes, each in different subgraph
- Support two operations
 - Find – are nodes x & y in same subgraph?
 - Union – merge subgraphs containing x & y
Union-Find Algorithm

- **Basic approach**
 - Each node has a parent pointer
 - Find – follow parent pointer(s) to root of tree
 - Union – point root of 1st tree to root of 2nd tree

- **Example**
 - Union(a, b) ; union(c , d); union(b, d)
Union-Find Algorithm

Path compression
- Speeds up future Find() operations
 1. Follow parent pointer(s) to root of tree
 2. Update all nodes along path to point to root

Example
 - Find(d)

So how fast is Union-Find?
Ackermann’s Function

Function

```c
int A(x,y) {
    if (x == 0)
        return y+1;
    if (y == 0)
        return A(x – 1, 1);
    return A(x – 1, A(x, y – 1));
}
```

A() grows fast

- \(A(2,2) = 7 \)
- \(A(3,3) = 61 \)
- \(A(4,2) = 2^{65536} – 3 \)
- \(A(4,3) = 2^{2^{65536}} – 3 \)
- \(A(4,4) = 2^{2^{2^{65536}}} – 3 \)
Inverse Ackermann’s Function

Definition
- $\alpha(n)$ is the inverse Ackermann’s function
- $\alpha(n) = \text{the smallest } k \text{ such that } A(k,k) \geq n$

Fun fact
- $\alpha(\text{number of atoms in universe}) = 4$

Union-find
- A sequence of n operations requires $O(n \alpha(n))$ time
- Practically speaking, indistinguishable from $O(n)$
Graph Summary

- Graph data structure
 - Very useful in practice
 - Different representations

- Many graph algorithms
 - Traversal
 - Shortest path
 - Minimum spanning tree
Algorithms / Data Structures

- Introduction to data structures in 132
 - Lists, Trees, Graphs, Sets / Maps
- Much more to learn in future courses
 - 351 – Introduction to Algorithms
 - Dynamic programming, recurrences, reductions, NP-completeness…
 - 420 – Data Structures
 - Balanced trees, quadtrees, k-d trees…
 - 451 – Design and Analysis of Computer Algorithms
 - Correctness proofs, analyzing complexity…