ANNOUNCEMENTS

- None
USABILITY: FRAMES

- Frame
 - Allows us to view several HTML documents in the same window.
 - A page can be loaded in a frame while other stay constant.
 - **Example:**
 - http://java.sun.com/j2se/1.5.0/docs/api/index.html

- Causes big problems from a usability point of view
 - Bookmarking will not work as expected.
 - Search engines have difficulties with frames.
 - Printing can be problematic.
 - Effects associated with frames can be achieved via CSS positioning and `<div>` tag.
GUIDELINES FOR AN USABLE WEB SITE

- **Visual Consistency** - When a new page is selected in a site it should be easy to identify it belongs to the same site.
 - You can achieve consistency by
 - Using logos or banners.
 - Keeping a consistent layout and configuration of elements. For example:
 - Navigation bar is consistent in its placement and appearance.
 - Consistent coloring.
 - If the layout is not consistent you can use identical colors and shape elements to make pages appear consistent.

- **Navigation** – For an easily navigable site users should be clear about:
 - Where they will go when selecting a link.
 - Where they are in the site.
 - How to get back to a recognizable starting place.
GUIDELINES FOR AN USABLE WEB SITE

- **Navigation: Approaches to organize a site**
 - **Sequential Organization** – Pages follow a certain order and are linked to one another in order. Appropriate for scenarios where:
 - Sequence of steps needed to complete a task are described.
 - A story is told.
 - Chronological information is presented.
 - **Hierarchical Organization** – Appropriate for sites with a very large number of pages. A main page has categories with subcategories, etc. Users should know their position in the structure.
 - **Web-based Organization** – Most common organizational structure.
 - Web-like structure (should not force one of the organizations previously discussed).
 - Pages link to one another based on content
 - A page could be accessible only from one particular page.
 - A page can connect many pages.
 - Etc.
GUIDELINES FOR AN USABLE WEB SITE

- **Links**
 - Links names should be descriptive and indicate where the links go.
 - Rather than next, prev, up, down add a description of the nature of the page that will be reached.
 - “next: Weather in the USA”
 - “up: Courses at UMCP”

- **Search**
 - Search tools for an entire web site can help users find what they need.
 - The search should search the web site by default.
SECURITY (EMAIL)

- Least secure of internet protocols.
- Avoid sending sensitive information (e.g., passwords) over e-mail.
- Provide e-mail addresses in web sites in a way is not easily recognized by spam programs.
 - Use at rather than @.
 - Put an image with the e-mail.
 - Avoid mailto.
- Encrypt the message using PGP (Pretty Good Privacy) or GPG (GNU Privacy Guard).
SECURITY (PASSWORD-PROTECTED SITES)

- **Approach not recommended**
 - Store encrypted password.
 - Decrypt password and compare against user provided password.

- **Better approach**
 - Store encrypted password.
 - Encrypt provided password and compare against stored password.
SECURITY (ENCRYPTION)

- **Encryption** – process of converting plaintext into ciphertext.
- **Decryption** – process of converting ciphertext into plaintext.
- **Symmetric cryptography** – sender and receiver share the same key.
- **Asymmetric (Public Key) cryptography** – sender and receiver have different, complementary keys.
- **Symmetric cryptography**
 - Relatively fast compared to Asymmetric.
- **Drawbacks**
 - Keys must be change frequently.
 - How to distribute the key safely.
SECURITY (ENCRYPTION)

- Branches of public key cryptography
 - Public key encryption
 - Digital signatures

- Public key Encryption
 - Example algorithm: RSA
 - Relatively slowed compared to Asymmetric.
 - How it works?
 - Each user has a public/private key pair.
 - Public key is widely known.
 - Private key only known by user that generated it.
 - If user A wants to send user B a message, user A encrypts message with B’s public key. B will decrypt the message with B’s private key. The only way to decrypt the message is by using B’s private key.

- Digital signature
 - Message signed with sender’s private key can be verified by anyone with sender’s public key thereby proving message authenticity.
Digital Certificates – electronic documents that contain information about a public key and the owner (name, address, etc.).

Employed to verify a public key corresponds to a particular organization.

Certificates must be issued by a trusted third party known as certificate authority (CA) which guarantees the information is correct.

About certificates

- Have a validity period and can expire.
- They can be revoked.
- Browsers have a collection of root certificates.
- Main standard X.509.
MESSAGE DIGESTS

- Message digest – fixed-length representation of a message.
- Expected properties for message digest ("Hashing") algorithm
 - Original message cannot be obtained from the digest.
 - Two different messages should have different digests.
- Example algorithms: MD5 and SHA
NEED FOR SECURITY

- **SSL (Secure Sockets Layer) Protocol** – Protocol that enable us to satisfy the need for security in client-web server transactions.
- The algorithm provides support for confidentiality, integrity and authentication.
- **SSL connection is established as follows:**
 - User connects to web server through the browser.
 - Browser and server exchange public keys and certificate information.
 - Browser checks server certificate validity (certificate not expired, issued by CA, etc.).
 - Optional: server can request a valid certificate from the client.
 - Using public keys server and client determine a symmetric key to use.
 - Communication from this point on is through symmetric cryptography.
HTTPS

- **https** – http where
 - A different default port (443) is used.
 - An extra layer of encryption/authentication exists between HTTP and TCP.

- **https** – is not a separate protocol but a combination of HTTP over encrypted SSL or TLS transport mechanism.

- **TLS** – Transport Layer Security
 - IETF standard designed to standardize SSL as an Internet protocol.
 - Slight differences between SSL 3.0 and TLS 1.0.
SECURITY SITES

- www.securityfocus.com/
- www.cert.org/
- http://rootshell.com/