Finite Automata 2

This Lecture
- Reducing NFA to DFA
 - \(\varepsilon \)-closure
 - Subset algorithm
- Minimizing DFA
 - Moore reduction
- Complementing DFA
- Implementing DFA

Reducing NFA to DFA
- NFA may be reduced to DFA
 - By explicitly tracking the set of NFA states
- Intuition
 - Build DFA where
 - Each DFA state represents a set of NFA states
- Example

Reducing NFA to DFA (cont.)
- Reduction applied using the subset algorithm
 - DFA state is a subset of set of all NFA states
- Algorithm
 - Input
 - NFA \((\Sigma, Q, q_0, F, \delta) \)
 - Output
 - DFA \((\Sigma, R, r_0, F_d, \delta) \)
 - Using
 - \(\varepsilon \)-closure(p)
 - move(p, a)
ε-transitions and ε-closure

- We say \(p \xrightarrow{\varepsilon} q \)
 - If it is possible to go from state \(p \) to state \(q \) by taking only \(\varepsilon \)-transitions
 - If \(\exists \ p, p_1, p_2, \ldots, p_n, q \in Q \) such that
 \(\{ p, \varepsilon, p_1 \} \in \delta, \{ p_1, \varepsilon, p_2 \} \in \delta, \ldots, \{ p_n, \varepsilon, q \} \in \delta \)
- ε-closure(\(p \))
 - Set of states reachable from \(p \) using ε-transitions alone
 - Set of states \(q \) such that \(\exists \ p \xrightarrow{\varepsilon} q \)
 - ε-closure(\(p \)) = \(\{ q \mid p \xrightarrow{\varepsilon} q \} \)
 - Note
 - ε-closure(\(p \)) always includes \(p \)
 - ε-closure(\() \) may be applied to set of states (take union)

ε-closure: Example 1

- Following NFA contains
 - \(S_1 \xrightarrow{\varepsilon} S_2 \)
 - \(S_2 \xrightarrow{\varepsilon} S_3 \)
 - \(S_1 \xrightarrow{\varepsilon} S_3 \)
- ε-closures
 - ε-closure(\(S_1 \)) = \{ \(S_1, S_2, S_3 \) \}
 - ε-closure(\(S_2 \)) = \{ \(S_2, S_3 \) \}
 - ε-closure(\(S_3 \)) = \{ \(S_3 \) \}
 - ε-closure(\(\{ S_1, S_2 \} \)) = \{ \(S_1, S_2, S_3 \) \} ∪ \{ \(S_2, S_3 \) \}

ε-closure: Example 2

- Following NFA contains
 - \(S_1 \xrightarrow{\varepsilon} S_3 \)
 - \(S_3 \xrightarrow{\varepsilon} S_2 \)
 - \(S_1 \xrightarrow{\varepsilon} S_2 \)
- ε-closures
 - ε-closure(\(S_1 \)) = \{ \(S_1, S_2, S_3 \) \}
 - ε-closure(\(S_2 \)) = \{ \(S_2 \) \}
 - ε-closure(\(S_3 \)) = \{ \(S_2, S_3 \) \}
 - ε-closure(\(\{ S_2, S_3 \} \)) = \{ \(S_2 \) \} ∪ \{ \(S_2, S_3 \) \}

ε-closure: Practice

- Find ε-closures for following NFA
 - The regular expression (0|1*)111(0*|1)

Calculating move(\(p, a \))

- move(\(p, a \))
 - Set of states reachable from \(p \) using exactly one transition on \(a \)
 - Set of states \(q \) such that \(\{ p, a, q \} \in \delta \)
 - move(\(p, a \)) = \{ \(q \mid \{ p, a, q \} \in \delta \} \)
 - Note move(\(p, a \)) may be empty \(\emptyset \)
 - If no transition from \(p \) with label \(a \)

move(\(a, p \)) : Example 1

- Following NFA
 - \(\Sigma = \{ a, b \} \)
- Move
 - move(\(S_1, a \)) = \{ \(S_2, S_3 \) \}
 - move(\(S_1, b \)) = \emptyset
 - move(\(S_2, a \)) = \emptyset
 - move(\(S_2, b \)) = \{ \(S_3 \) \}
 - move(\(S_3, a \)) = \emptyset
 - move(\(S_3, b \)) = \emptyset
move(a,p) : Example 2

Following NFA

• Σ = { a, b }

Move

• move(S1, a) = { S2 }
• move(S1, b) = { S3 }
• move(S2, a) = { S3 }
• move(S2, b) = Ø
• move(S3, a) = Ø
• move(S3, b) = Ø

NFA → DFA Reduction Algorithm

• Input NFA (Σ, Q, q0, F, δ)
• Output DFA (Σ, R, r0, Fd, δ)

Algorithm

• Let r0 = ε-closure(q0), add it to R // DFA start state
• While ∃ an unmarked state r ∈ R // process DFA state r
 • Mark r // each state visited once
 • For each a ∈ Σ // for each letter a
 • Let S = { s | q ∈ r & move(q,a) = s } // states reached via a
 • Let e = ε-closure(S) // states reached via ε
 • If e ∈ R // if state e is new
 • Let R = e ∪ R // add e to R (unmarked)
 • Let δ = δ ∪ { r, a, e } // add transition r-e
 • Let Fd = { r | ∃ s ∈ r with s ∈ F } // final if include state in F

NFA → DFA Example 1

• Start = ε-closure(S1) = { S1,S3 }
• R = { S1,S3 }
• r ∈ R = { S1,S3 }
• Move(S1,S3,a) = S2
 • e = ε-closure(S2) = { S2 }
 • R = R ∪ { S2 } = { S1,S3 }, (S2)
 • δ = δ ∪ ({ S1,S3 }, a, { S2 })
• Move(S1,S3,b) = Ø

NFA → DFA Example 1 (cont.)

• R = { S1,S3 }, (S2)
• r ∈ R = { S2 }
• Move(S2),a) = Ø
• Move(S2,b) = { S3 }
 • e = ε-closure(S3) = { S3 }
 • R = R ∪ { S3 } = { S1,S3 }, (S2), (S3)
 • δ = δ ∪ { S2 }, b, (S3)

NFA → DFA Example 2
NFA → DFA Example 3

- NFA
- DFA

\[R = \{ \{A, E\}, \{B, D, E\}, \{C, D\}, \{E\} \} \]

Equivalence of DFAs and NFAs

- Any string from \{A\} to either \{D\} or \{CD\}
 - Represents a path from A to D in the original NFA

Equivalent of DFAs and NFAs (cont.)

- Can reduce any NFA to a DFA using subset alg.
- How many states in the DFA?
 - Each DFA state is a subset of the set of NFA states
 - Given NFA with \(n \) states, DFA may have \(2^n \) states
 - Since a set with \(n \) items may have \(2^n \) subsets
 - Corollary
 - Reducing a NFA with \(n \) states may be \(O(2^n) \)

Minimizing DFA

- Result from CS theory
 - Every regular language is recognizable by a minimum-state DFA that is unique up to state names
- In other words
 - For every DFA, there is a unique DFA with minimum number of states that accepts the same language
 - Two minimum-state DFAs have same underlying shape

Minimizing DFA: Moore Reduction

- Intuition
 - Look for states that can be distinguish from each other
 - End up in different accept / non-accept state with identical input
- Algorithm
 - Construct initial partition
 - Accepting & non-accepting states
 - Iteratively refine partitions
 - Split a partition if members in partition have transitions to different partitions for same input
 - Two states \(x, y \) belong in same partition if and only if for all symbols in \(\Sigma \) they transition to the same partition
 - Update transitions & remove dead states

Splitting Partitions

- No need to split partition \{S, T, U, V\}
 - All transitions on \(a \) lead to identical partition \(P_2 \)
 - Even though transitions on \(a \) lead to different states
Splitting Partitions (cont.)

- Need to split partition \(\{S,T,U\} \) into \(\{S,T\} \), \(\{U\} \)
 - Transitions on \(a \) from \(S,T \) lead to partition \(P_2 \)
 - Transition on \(a \) from \(R \) lead to partition \(P_3 \)

Resplitting Partitions

- Need to reexamine partitions after splits
 - Initially no need to split partition \(\{S,T,U\} \)
 - After splitting partition \(\{X,Y\} \) into \(\{X\} \), \(\{Y\} \)
 - Need to split partition \(\{S,T,U\} \) into \(\{S,T\} \), \(\{U\} \)

Minimizing DFA: Example 1

- DFA

- Initial partitions
 - Accept \(\{R\} \) → \(P_1 \)
 - Reject \(\{S,T\} \) → \(P_2 \)

- Split partition? → Not required, minimization done
 - move(\(S,a\)) = \(T \rightarrow P_2\)
 - move(\(S,b\)) = \(R \rightarrow P_1\)
 - move(\(T,a\)) = \(T \rightarrow P_2\)
 - move(\(T,b\)) = \(R \rightarrow P_1\)

Minimizing DFA: Example 2

- DFA

- Initial partitions
 - Accept \(\{R\} \) → \(P_1 \)
 - Reject \(\{S,T\} \) → \(P_2 \)

- Split partition? → Not required, minimization done
 - move(\(S,a\)) = \(T \rightarrow P_2\)
 - move(\(S,b\)) = \(R \rightarrow P_1\)
 - move(\(T,a\)) = \(S \rightarrow P_2\)
 - move(\(T,b\)) = \(R \rightarrow P_1\)

Minimizing DFA: Example 3

- DFA

- Initial partitions
 - Accept \(\{R\} \) → \(P_1 \) minimal
 - Reject \(\{S,T\} \) → \(P_2 \)

- Split partition? → Yes, different partitions for \(B \)
 - move(\(S,a\)) = \(T \rightarrow P_2\)
 - move(\(S,b\)) = \(T \rightarrow P_2\)
 - move(\(T,a\)) = \(T \rightarrow P_2\)
 - move(\(T,b\)) = \(R \rightarrow P_1\)

Complement of DFA

- Given a DFA accepting language \(L \)
 - How can we create a DFA accepting its complement?
 - Example DFA
 - \(\Sigma = \{a,b\} \)
Complement of DFA (cont.)

- Algorithm
 - Add explicit transitions to a dead state
 - Change every accepting state to a non-accepting state & every non-accepting state to an accepting state
- Note this only works with DFAs
 - Why not with NFAs?

Practice

Make the DFA which accepts the complement of the language accepted by the DFA below.

Reducing DFAs to REs

- General idea
 - Remove states one by one, labeling transitions with regular expressions
 - When two states are left (start and final), the transition label is the regular expression for the DFA

Relating REs to DFAs and NFAs

- Why do we want to convert between these?
 - Can make it easier to express ideas
 - Can be easier to implement

Implementing DFAs

- It's easy to build a program which mimics a DFA
- Given components (Σ, Q, q0, F, δ) of a DFA:
 - let q = q0
 - while (there exists another symbol s of the input string)
 - q := δ(q, s)
 - if q ∈ F then accept
 - else reject

- Alternatively, use generic table-driven DFA
 - q is just an integer
 - Represent δ using arrays or hash tables
 - Represent F as a set
Run Time of DFA

- How long for DFA to decide to accept/reject string s?
 - Assume we can compute $\delta(q, c)$ in constant time
 - Then time to process s is $O(|s|)$
 > Can’t get much faster!
- Constructing DFA for RE A may take $O(2^{|A|})$ time
 - But usually not the case in practice
- So there’s the initial overhead
 - But then processing strings is fast

Regular Expressions in Practice

- Regular expressions are typically “compiled” into tables for the generic algorithm
 - Can think of this as a simple byte code interpreter
 - But really just a representation of $(\Sigma, Q_A, q_0, f_A, \delta_A)$, the components of the DFA produced from the RE
- Regular expression implementations often have extra constructs that are non-regular
 - I.e., can accept more than the regular languages
 - Can be useful in certain cases
 - Disadvantages
 > Nonstandard, plus can have higher complexity

Practice

- Convert to a DFA

- Convert to an NFA and then to a DFA
 - $(0|1)*11|0*$
 - Strings of alternating 0 and 1
 - $aba^*|(ba|b)$

Summary of Regular Expression Theory

- Finite automata
 - DFA, NFA
- Equivalence of RE, NFA, DFA
 - RE \rightarrow NFA
 > Concatenation, union, closure
 - NFA \rightarrow DFA
 > ϵ-closure & subset algorithm
- DFA
 - Minimization, complement
 - Implementation