1. (21 pts) OCaml Polymorphic Types
Consider a OCaml module Bst that implements a binary search tree:

```ocaml
module Bst = struct
  type bst =
    Empty
  | Node of int * bst * bst

  let empty = Empty  (* empty binary search tree   *)

  let is_empty = function (* return true for empty bst     *)
    Empty -> true
  | Node (_, _, _) -> false

  let rec insert n = function (* insert n into binary  search tree *)
    Empty -> Node (n, Empty, Empty)
  | Node (m, left, right) ->
      if m = n then Node (m, left, right)
      else if n < m then Node(m, (insert n left), right)
      else Node(m, left, (insert n right))

  (* Implement the following functions
    val min : bst -> int
    val remove : int -> bst -> bst
    val fold : ('a -> int -> 'a) -> 'a -> bst -> 'a
    val size : bst -> int
  *)

  let rec min =   (* return smallest value in bst         *)
    let rec remove n t =  (* tree with n removed     *)
      let rec fold f a t =  (* apply f to nodes of t in inorder  *)
        let size t =   (* # of non-empty nodes in t          *)

end
```

a. (3 pts) Is insert tail recursive? Explain why or why not.
 No, since the return value for recursive call to insert cannot be used as the return value of the original call to insert. The return value is used to create a Node data type first, and the Node value is returned.

b. (3 pts) Implement min as a tail-recursive function. Raise an exception for an empty bst. Any reasonable exception is fine.
   ```ocaml
   let rec min = function
      Empty -> (raise (Failure "min"))
  | Node (m, left, right) ->
      if (is_empty left) then m
      else min left
   ```
c. (6 pts) Implement remove. The result should still be a binary search tree.

```ocaml
let rec remove n = function
  | Empty -> Empty
  | Node (m, left, right) ->
    if m = n then (
      if (is_empty left) then right
      else if (is_empty right) then left
      else let x = min right in
      Node(x, left, remove x right)
    // OR
    // else let x = max left in
    //     Node(x, remove x left, right)
    )
    else if n < m then Node(m, (remove n left), right)
    else Node(m, left, (remove n right))
```

d. (6 pts) Implement fold as an inorder traversal of the tree so that the code

```ocaml
List.rev (fold (fun a m -> m::a) [] t)
```

will produce an (ordered) list of values in the binary search tree.

```ocaml
let rec fold f a n = match n with
  | Empty -> a
  | Node (m, left, right) -> fold f (fold f a left) m right
```

e. (3 pts) Implement size using fold.

```ocaml
let size t = fold (fun a m -> a+1) 0 t
```

2. (36 pts) Recursive Descent Parser in OCaml

The example OCaml recursive descent parser 15-parseArith_fact.ml employs a number of shortcuts. For instance, the function parseS handles the grammar rules for

\[
S \rightarrow T + S \mid T
\]

directly instead of first applying left factoring:

\[
S \rightarrow T \ A \ A \rightarrow + S \mid \text{epsilon}
\]

However, we can still identify where code corresponding to parseA was inserted directly in the code for parseS, in the comments below:

```ocaml
let rec parseS lr =
  (* parseS *)
  let x = parseT lr in
  (* S \rightarrow T \ A *)
  match !lr with
  (* parseA *)
  | ('+'::t) ->
    (* if lookahead = First( + S ) *)
    lr := t;
    (* A \rightarrow + S *)
    Sum (x.parseS lr)
  | _ -> x
    (* A \rightarrow \text{epsilon} *)
```

Similarly, the function parseF handles the grammar rules for

\[
F \rightarrow F \ ! \mid U
\]

directly instead of rewriting the grammar, creating the following productions:

\[
F \rightarrow ? \quad B \rightarrow ?
\]

You must identify where code corresponding to parseB was inserted directly in the code for parseF in the comments below:

```ocaml
let rec parseF lr =
  (* parseF *)

a. (3 pts) What rule should have been applied to the productions for F?
   Eliminate left recursion
   (e.g., change \texttt{A \rightarrow A B \mid C} to \texttt{A \rightarrow C N}
   \texttt{N \rightarrow B N \mid \texttt{epsilon}})

b. (6 pts) What productions for F & B would be created by applying the rule?
   \texttt{F \rightarrow U B}
   \texttt{B \rightarrow ! B \mid \texttt{epsilon}}

c. (3 pts) What sentential form should appear in place of ? in comment 1?
\texttt{! B}

d. (3 pts) What production should appear in place of ? in comment 2?
\texttt{B \rightarrow ! B}

e. (3 pts) What production should appear in place of ? in comment 3?
\texttt{B \rightarrow \texttt{epsilon}}

f. (3 pts) What production should appear in place of ? in comment 4?
\texttt{F \rightarrow U B}

3. (6 pts) Function arguments
   
a. In the following code, identify each funarg and whether it is upward or downward.
   
   let f x = let g y = x + y in let app a b = a b in app g 1 ;;
   
   \texttt{g is a downwards funarg since it is a function parameter passed to app}
   
   b. In the following code, identify each funarg and whether it is upward or downward.
   
   let f x = let g y = x + y in g ;;
   
   \texttt{g is an upwards funarg since it is a function return value for 2\textsuperscript{nd} let}

   A funarg is simply a function argument where the function is either
   
   1. Passed as a parameter to a function call
   2. Returned as the return value of a function call

   It is arguable that \texttt{f} can also be considered an upwards funarg since it is a function value bound to the symbol \texttt{f} by the 1\textsuperscript{st} let, and accessible outside the scope of the let (since the binding is a the top level environment due to the “;;”).

   In comparison, \texttt{app} is not considered a funarg since it is not used as a parameter or return value, nor is it accessible outside the scope of its let statement.

   For the purposes of the homework (and the final), we’ll only consider funargs that are \textbf{explicitly} used as a function parameter or return value (i.e., \texttt{g}, not \texttt{f}).
4. (6 pts) Static vs. Dynamic Scoping
Consider the following OCaml code.

```
let a = 1 ;;
let f = fun () -> a ;; // value of a determined here for static scoping
let a = 2 ;;
f ();; // value of a determined here for dynamic scoping
```

a. What value is returned by the invocation of f( ) with static scoping? Explain.
   1, since the binding for “a” in the function “f = fun ( ) -> a” refers to the
   closest lexical value of “a” at the point where the function is declared in
   the code (1st let a).

b. What value is returned by the invocation of f( ) with dynamic scoping? Explain.
   2, since the binding for “a” in the function “f = fun ( ) -> a” refers to the
   closest value of “a” in the call stack at the point where the function is
   actually invoked (2nd let a).

5. (8 pts) Parameter passing
Consider the following C code.

```
int i = 2;
void foo(int f, int g) {
 f = f-i;
 g = f;
}
int main() {
 int a[] = {2, 0, 1};
 foo(i, a[i]);
 printf("%d %d %d %d\n", i, a[0], a[1], a[2]);
}
```

a. (2 pts) Give the output if C uses call-by-value
   2 2 0 1, since the call to foo( ) creates 2 local variables f & g (initialized
   with the values of i & a[i]), and all changes to f & g do not affect i or a[i].

b. (3 pts) Give the output if C uses call-by-reference
   0 2 0 0, since the call to foo( ) binds f to i & g to a[2], invoking foo( ) =
   void foo(f ⇒ i, g ⇒ a[2]) {
       f = f – i;  // equivalent to i = i – i ⇒ i = 0
       g = f;     // equivalent to a[2] = i ⇒ a[2] = 0
   }

c. (3 pts) Give the output if C uses call-by-name
   0 0 0 1, since the call to foo( ) replaces f with i & g with a[i], foo( ) =
   void foo(f ⇒ i, g ⇒ a[i]) {
       f = f – i;  // equivalent to i = i – i ⇒ i = 0
       g = f;     // equivalent to a[i] = i ⇒ a[0] = 0
   }

6. (10 pts) Polymorphism
Consider the following Java classes:
class A { public void a() { ... } }
class B extends A { public void b() { ... } }
class C extends B { public void c() { ... } }

Explain why the following code is or is not legal

a. int count(Set<? extends A> s) { ... } ... count(new TreeSet<A>( ));
   Legal. Actual parameter type (Set<? extends A>) matches formal parameter type (Set<A>)

b. int count(Set<? extends A> s) { ... } ... count(new TreeSet<B>( ));
   Illegal. Actual parameter type (Set<? extends A>) is not a subclass of formal parameter type (Set<A>), even though B is a subclass of A.

c. int count(Set s) { ... } ... count(new TreeSet<A>( ));
   Legal. Type erasure will cause formal parameter type (TreeSet<A>) to become TreeSet, which matches actual parameter type (Set).

d. int count(Set<?> s) { ... } ... count(new TreeSet<A>( ));
   Legal. Actual parameter type (Set<?>) matches formal parameter type (Set<? extends A>), since ? extends A.

e. int count(Set<? extends A> s) { ... } ... count(new TreeSet<B>( ));
   Legal. Actual parameter type (Set<? extends A>) matches formal parameter type (Set<? extends B>), since “? extends A” can match A and its subclasses B & C (classes that extend A, including A).

f. int count(Set<? extends B> s) { ... } ... count(new TreeSet<A>( ));
   Illegal. Actual parameter type (Set<? extends B>) does not match formal parameter type (Set<? extends A>), since “? extends B” can match only B and its subclass C (classes that extend B, including B)

g. int count(Set<? extends B> s) { for (A x : s) x.a(); ... }
   Legal. The actual parameter type (Set<? extends B>) indicates s contains elements of class B or its subclasses. So any element of s may be treated as an object of class B or its subclasses (e.g., C). The for loop treats elements of s as objects of class A, which is a superclass of B, and thus is legal (can use subclass in place of superclass).

h. int count(Set<? extends B> s) { for (C x : s) x.c(); ... }
   Illegal. The actual parameter type (Set<? extends B>) indicates s contains elements of class B or its subclasses. So any element of s may be treated as an object of class B or its subclasses (e.g., C). The for loop treats elements of s as objects of class C, and is illegal since elements of s may be objects of class B (cannot use superclass in place of subclass).

i. int count(Set<? super B> s) { for (A x : s) x.a(); ... }
   Illegal. The actual parameter type (Set<? super B>) indicates s contains elements of class B or its superclasses. So any element of s may be treated as an object of class B or its superclasses (e.g., A, Object). The for loop treats elements of s as objects of class A, and is illegal since elements of s may be objects of class Object (cannot use superclass in place of subclass).

j. int count(Set<? super B> s) { for (C x : s) x.c(); ... }
   Illegal. The actual parameter type (Set<? super B>) indicates s contains elements of class B or its superclasses. So any element of s may be treated as an object of class B or its superclasses (e.g., A, Object). The for loop
treats elements of $s$ as objects of class $C$, which is not included and thus illegal.
7. (6 pts) Java multithreading

a. Using Java Conditions, you must implement a synchronization construct called MyBarrier. A MyBarrier object is created with a certain value n. When a thread calls the method enter( ), it enters the barrier and blocks until a total of n threads have entered the barrier. When the n\textsuperscript{th} threads enters the barrier, all the threads waiting at the barrier wake up and unblock, and the n\textsuperscript{th} thread continues without blocking. When a thread calls the method reset( ), the barrier is reset so that it starts fresh in counting up to n (i.e., n more threads must enter the MyBarrier).

```java
public class MyBarrier {
 int num; // shared read-only data
 int current = 0; // shared modifiable data
 Lock lock = new ReentrantLock();
 Condition ready = lock.newCondition();

 public MyBarrier(int n) {
 num = n;
 }

 public void enter() throws InterruptedException {
 lock.lock(); // prevent data race on current
 current++; // incr # of threads at barrier
 if (current == num) { // enough threads at barrier
 ready.signalAll(); // wake up other threads
 } // continue execution
 else {
 while (current < num) { // wait for more threads to enter
 ready.await(); // sleep until enough threads enter
 } // use while () in case reset() called
 }
 lock.unlock();
 }

 public void reset() {
 lock.lock(); // prevent data race on current
 current = 0;
 lock.unlock();
 }
}
```
8. (6 pts) Garbage collection

Consider the following Java code.

```java
Object a, b, c;
public foo() {
 a = new Object(); // object 1
 b = new Object(); // object 2
 c = new Object(); // object 3
 a = b;
 b = c;
 c = a;
}
```

a. (3 pts) What object(s) are garbage when foo( ) returns? Explain why.

Object 1 is garbage there are no longer any references to it within the program. After foo( ) returns, a → object 2, b → object 3, c → object 2.

b. (3 pts) Describe the difference between mark-and-sweep & stop-and-copy.

Mark-and-sweep stops the program to determine what objects are still reachable. Stop-and-copy in addition will move reachable objects to new locations.

9. (4 pts) Markup languages

a. Creating your own XML tags, write an XML document that organizes the following information: 1-hour test on Spanish Monday in Jiménez worth 15%, 1-hour test on Computers Tuesday in CSIC worth 10%. 30-minute test on Computers Friday in AVW worth 5%.

```xml
<testList>
 <test>
 <length>1 hour</length>
 <subject>Spanish</subject>
 <date>Monday</date>
 <location>Jiménez</location>
 <value>15%</value>
 </test>
 <test>
 <length>1 hour</length>
 <subject>Computers</subject>
 <date>Tuesday</date>
 <location>CSIC</location>
 <value>10%</value>
 </test>
 <test>
 <length>30 minute</length>
 <subject>Computers</subject>
 <date>Friday</date>
 <location>AVW</location>
 <value>5%</value>
 </test>
</testList>
```
10. (8 pts) Lambda calculus
   Evaluate the following \( \lambda \)-expressions as much as possible
   
   a. \( (\lambda z. z) (\lambda y. y) (\lambda x. a) \)  
      \( (\lambda z. z) (\lambda y. y) (\lambda x. a) \rightarrow \)  
      \( \beta \)-reduction = body[sym/replacement]  
      replace z with \( \lambda y. y \)  
      replace y with \( \lambda x. a \)  
      replace x with a  
   
   b. \( (\lambda z. z) (\lambda z. z) \)  
      \( (\lambda z. z) (\lambda z. z) \rightarrow \)  
      \( \beta \)-reduction: replace z with \( \lambda z. z \)  
      replace y with \( \lambda z. z \)  
      replace z with \( \lambda z. z \)  
      replace z with \( \lambda z. z \)  
   
   c. \( (\lambda x. \lambda y. x y y) (\lambda a. a) b \)  
      \( (\lambda x. \lambda y. x y y) (\lambda a. a) b \rightarrow \)  
      \( \beta \)-reduction: replace x with \( \lambda a. a \)  
      replace y with \( \lambda a. a \)  
      replace b with \( \lambda a. a \)  
      replace a with b  
   
   d. \( (\lambda x. \lambda y. x y y) (\lambda y. y) y \)  
      \( (\lambda x. \lambda y. x y y) (\lambda y. y) y \rightarrow \)  
      \( \alpha \)-conversion: replace y with a  
      replace x with \( \lambda y. y \)  
      replace a with y  
      replace y with y
11. (24 pts) Lambda calculus
Prove the following using the appropriate \(\lambda\)-calculus encodings

a. \(\text{not (not true) = true}\)

**Given:**

\[
\text{not} = \lambda x.((x \text{ false}) \text{ true}) \\
\text{true} = \lambda x.\lambda y.x \\
\text{false} = \lambda x.\lambda y.y
\]

**Proof:**

\[
\begin{align*}
\text{not (not true)} & = \lambda x.((x \text{ false}) \text{ true}) (\text{not true}) \\
& = (\lambda x.((x \text{ false}) \text{ true}) \text{ true}) \text{ false} \\
& = ((\lambda x.((x \text{ false}) \text{ true}) \text{ true}) \text{ true}) \text{ true} \\
& = ((\lambda x.\lambda y.x) \text{ false}) \text{ true} \\
& = \lambda y.y \text{ true} \\
& = \text{true}
\end{align*}
\]

b. \(\text{if false then x else y = y}\)

**Given:**

\[
\text{if a then b else c} = a \ b \ c \\
\text{true} = \lambda x.\lambda y.x \\
\text{false} = \lambda x.\lambda y.y
\]

**Proof:**

\[
\begin{align*}
\text{if false then x else y} & = \text{false x y} \\
& = (\lambda x.\lambda y.y) x y \\
& = (\lambda y.y) y \\
& = y
\end{align*}
\]

\(\text{c. succ 2 = 3}\)

**Given:**

\[
\begin{align*}
2 & = \lambda f.\lambda y.f (f y) \\
3 & = \lambda f.\lambda y.f (f (f y)) \\
\text{succ} & = \lambda z.\lambda f.\lambda y.f (z f y)
\end{align*}
\]

**Proof:**

\[
\begin{align*}
\text{succ 2} & = (\lambda z.\lambda f.\lambda y.f (z f y)) 2 \\
& = \lambda f.\lambda y.f (2 f y) \\
& = \lambda f.\lambda y.f ((\lambda f.\lambda y.f (f y)) f y) \\
& = \lambda f.\lambda y.f ((\lambda y.f (f y)) y) \\
& = \lambda f.\lambda y.f (f (f y)) \\
& = 3
\end{align*}
\]
d. \((* 1 3) = 3\)

**Given:**

\[
\begin{align*}
1 &= \lambda f. \lambda y. f y \\
3 &= \lambda f. \lambda y. f (f (f y)) \\
M \ast N &= \lambda x. (M (N x))
\end{align*}
\]

**Proof:**

\[
\begin{align*}
(* 1 3) &= \lambda x. (1 (3 x)) \\
&= \lambda x. (1 (\lambda f. \lambda y. f (f y) (f (f y)) x)) \\
&= \lambda x. (1 (\lambda y. x (x (x y)))) \\
&= \lambda x. ((\lambda f. \lambda y. f y) (\lambda y. x (x (x y)))) & \beta\text{-reduction: } 1\text{st } f \rightarrow x \\
&= \lambda x. (\lambda y. x (x (x y))) y & \beta\text{-reduction: } 1\text{st } y \rightarrow y \\
&= \lambda f. \lambda y. f (f (f y)) & \alpha\text{-conversion: replace } x \text{ with } f \\
&= 3
\end{align*}
\]

e. \((+ 2 1) = 3\)

**Given:**

\[
\begin{align*}
1 &= \lambda f. \lambda y. f y \\
2 &= \lambda f. \lambda y. f (f y) \\
3 &= \lambda f. \lambda y. f (f (f y)) \\
M + N &= \lambda x. (\lambda y. (M x)((N x) y))
\end{align*}
\]

**Proof:**

\[
\begin{align*}
(+ 2 1) &= \lambda x. (\lambda y. (2 x)((1 x) y)) \\
&= \lambda x. (\lambda y. (\lambda f. \lambda y. f (f y)) (f (f y)) (x) ((1 x) y)) & \beta\text{-reduction: } 1\text{st } f \rightarrow x \\
&= \lambda x. (\lambda y. x (x y)) (x y) & \beta\text{-reduction: } 1\text{st } y \rightarrow y \\
&= \lambda x. (\lambda y. x (x y)) (x (x y)) & \alpha\text{-conversion: replace } x \text{ with } f \\
&= \lambda f. \lambda y. f (f (f y)) & \text{apply encoding for } 3 \\
&= 3
\end{align*}
\]

f. \((Y \text{ fact}) \ 2 = 2\) // you do not need to expand any operators except fact & Y

**Given:**

\[
\begin{align*}
Y &= \lambda f. (\lambda x. f (x x)) (\lambda x. f (x x)) \\
\text{fact} &= \lambda f. \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \ast (f (n-1))
\end{align*}
\]

**Proof:**

\[
\begin{align*}
(Y \text{ fact}) \ 2 &= \lambda f. (\lambda x. f (x x)) (\lambda x. f (x x)) \\
&= (\lambda f. (\lambda x. f (x x)) (\lambda x. f (x x)))\text{ fact} \ 2 & \beta\text{-reduction: } 1\text{st } f \rightarrow \text{ fact} \\
&= (\lambda x. \text{ fact} (x x)) (\lambda x. \text{ fact} (x x)) \ 2 & \beta\text{-reduction: } 1\text{st } x \rightarrow \lambda x. \text{ fact} (x x) \\
&= (\text{ fact} ((\lambda x. \text{ fact} (x x)) (\lambda x. \text{ fact} (x x)))) \ 2 & \text{apply encoding for } (Y \text{ fact}) \\
&= (\text{ fact} (Y \text{ fact})) \ 2 & \text{we know this is the encoding for } (Y \text{ fact}) \text{ from } 3\text{rd line of proof} \\
&= (\text{ fact} (Y \text{ fact})) \ 2 & \text{apply encoding for } \text{ fact}
\end{align*}
\]
\[
= (\lambda f. \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n * (f (n-1))) \text{ (Y fact)} 2 \\
= (\lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n * ((\text{Y fact}) (n-1))) \text{ (Y fact)} 2 \\
= \text{if } 2=0 \text{ then } 1 \text{ else } 2 * ((\text{Y fact}) (2-1)) \text{ (Y fact)} 2 \\
= 2 * ((\text{Y fact}) 1) \text{ (Y fact)} 2 \\
= 2 * 1 \text{ (Y fact)} 2 \\
= 2 \\
\]

12. (27 pts) Miscellaneous
   a. Describe the difference between OCaml modules and Java classes.
      Both provide a public definition for a group of functions whose internal
      details are hidden, but Java classes can also instantiate objects and
      inherit attributes from other classes (not possible with OCaml modules).
   b. Describe the difference between strong and weak typing.
      Strong typing prevents types from being used interchangeably, weak
      typing allows types to be treated as other types through many implicit
      type conversions.
   c. Explain how call-by-name simplifies implementing lazy evaluation.
      Expressions to be evaluated lazily may be passed as arguments to
      functions, since function arguments are not evaluated until used.
   d. Describe the difference between an L-value and an R-value.
      L-values refer to the address of a symbol, R-values refer to the value for a
      symbol.
   e. Describe the difference between ad-hoc and parametric polymorphism.
      Ad hoc polymorphism applies to code supporting a finite range of types
      whose combinations must be specified, parametric polymorphism applies
      to code written without mention to type that can transparently support
      an arbitrary number of types.
   f. Describe the difference between starvation and deadlock.
      Deadlocked threads are halted waiting for each other’s locks, whereas
      starving threads are waiting for locks from other (non-starving) threads.
   g. Describe how functional programming may be used to simulate OOP.
      An object may be simulated as a tuple, where each element of the tuple is
      a closures representing a method for the object.
   h. Describe the difference between HTML and XML.
      HTML tags are predefined and presentation-oriented, whereas XML tags
      are user defined and are intended for describing data and metadata.