Priority Queue ADT

- Efficiently support the following operations on a set of keys:
 - `findmin`: return the smallest key
 - `deletemin`: return the smallest key & delete it
 - `insert`: add a new key to the set
 - `delete`: delete an arbitrary key

- All the balanced-tree dictionary implementations we’ve seen support these in $O(\log n)$ time.

- Would like to be able to do `findmin` faster (say $O(1)$).
When scheduler asks “What should I run next?” it could findmin(H).
Plane Sweep: Process points left to right:

Store points in a priority queue, ordered by their x coordinate.
Heap-Ordered Trees

- The keys of the children of \(u \) are \(\geq \) the key(\(u \)), for all nodes \(u \).

- (This “heap” has nothing to do with the “heap” part of computer memory.)

- [Symmetric max-ordered version where keys are monotonically non-increasing]
Heap – Find min

The minimum element is always the root
Heap – Insert

1. Add node as a leaf (we’ll see where later)

2. \textit{“sift up:”} while current node is > its parent, swap them.
Heap – Delete\((i)\)

1. need a pointer to node containing key \(i\)

2. replace key to delete \(i\) with key \(j\) at a leaf node (we’ll see how to find a leaf soon)

3. Delete leaf

4. If \(i < j\) then sift up, moving \(j\) up the tree.

If \(i > j\) then “sift down”: swap current node with smallest of children until its bigger than all of its children.
Time Complexity

- *findmin* takes $O(1)$ time

- *insert*, *delete* take time $O($tree height$)$ plus the time to find the leaves.

- *deletemin*: same as delete

- But how do we find leaves used in *insert* and *delete*?
 - *delete*: use the last inserted node.
 - *insert*: choose node so tree remains complete.
Store Heap in a Complete Tree
Store Heap in a Complete Tree

left(i): 2i if 2i ≤ n otherwise 0
right(i): (2i + 1) if 2i + 1 ≤ n otherwise 0
parent(i): \(\lfloor i/2 \rfloor \) if \(i \geq 2 \) otherwise 0
Make Heap

- n inserts gives a $O(n \log n)$ time bound.
- Better:
 - put items into array arbitrarily.
 - for $i = n \ldots 1$, siftdown(i).
- Each element trickles down to its correct place.

By the time you sift level i, all levels $i + 1$ and greater are already heap ordered.
Make Heap – Time Bound

There are at most $\frac{n}{2^h}$ items at height h.

Siftdown for all height h nodes is $O(h \cdot \frac{n}{2^h})$ time

Total time

\[= O(\sum_h h \cdot \frac{n}{2^h}) \quad [\text{sum of time for each height}] \]
\[= O(n \sum_h (h / 2^h)) \quad [\text{factor out the } n] \]
\[= O(n) \quad [\text{sum bounded by const}] \]
Heapsort – Another application of Heaps

Given unsorted array of integers

<table>
<thead>
<tr>
<th>8</th>
<th>2</th>
<th>12</th>
<th>10</th>
<th>7</th>
<th>15</th>
<th>21</th>
<th>9</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>
Heapsort – Another application of Heaps

Given unsorted array of integers

makeheap – $O(n)$
Now first position has smallest item.

Swap first & last items.
Heapsort – Another application of Heaps

Given unsorted array of integers

<table>
<thead>
<tr>
<th></th>
<th>8</th>
<th>2</th>
<th>12</th>
<th>10</th>
<th>7</th>
<th>15</th>
<th>21</th>
<th>9</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

makeheap – O(n)

Now first position has smallest item.

<table>
<thead>
<tr>
<th></th>
<th>21</th>
<th>8</th>
<th>3</th>
<th>12</th>
<th>9</th>
<th>7</th>
<th>10</th>
<th>15</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Delete last item from heap.

<table>
<thead>
<tr>
<th></th>
<th>21</th>
<th>8</th>
<th>3</th>
<th>12</th>
<th>9</th>
<th>7</th>
<th>10</th>
<th>15</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>
Heapsort – Another application of Heaps

Given unsorted array of integers

makeheap – O(n)
Now first position has smallest item.

Delete last item from heap.

siftdown new root key down
d-Heaps

- What about complete non-binary trees (e.g. every node has d children)?
 - *insert* takes $O(\log_d n)$ [because height $O(\log_d n)$]
 - *delete* takes $O(d \log_d n)$ [why?]

- Can still store in an array.

- If you have few deletions, make d bigger so that tree is shorter.

- Can tune d to fit the relative proportions of inserts / deletes.
Find(i) ? How would you do it?
Leftist Heaps

- Often want to merge heaps:
 - \(\text{meld}(H_1, H_2) \): return new heap with the keys from \(H_1 \) and \(H_2 \), destroying heaps \(H_1 \) and \(H_2 \).
 - Hard to do with the complete tree implementation of heaps above.

- Idea: use \textit{imbalance} to make melds fast.
Null path length

\[npl(u) = \begin{cases}
0 & \text{if } u \text{ is an external node} \\
1 + \min\{npl(left(u)), npl(right(u))\} & \text{otherwise}
\end{cases} \]
Null Path Length / Rank / Balance

- A theme we’ve seen several times: associate a value with each node describing a property of its subtrees.

- balance - AVL trees - difference between right and left heights.

- rank - splay trees = floor(log #descendants) (used for the analysis only!)

- null path length - shortest distance to get to a null pointer.
Leftist Trees

A tree is a **leftist tree** if $\text{npl}(\text{left}(u)) \geq \text{npl}(\text{right}(u))$

A **leftist heap** is a leftist tree with keys in heap order.

Any non-leftist tree can be made leftist by swapping left & right children at node where leftist condition is violated.
Leftist trees have a short path

Thm. If rightmost path of leftist tree has r nodes, then whole tree has at least $2^r - 1$ nodes.

Proof.
- **Base Case:** When $r = 1, 2^1 - 1 = 1$ & tree has ≥ 1 node.

- **Induction hypothesis:** Assume $N(i) \geq 2^i - 1$ for $i < r$.

- **Induction step:** Left and right subtrees of the root have at least $2^{r-1} - 1$, nodes.

Thus, at least $2(2^{r-1} - 1) + 1 = 2^r - 1$ nodes in original tree. □

Therefore $n \geq 2^r - 1$, so r is $O(\log n)$
Meld is the fundamental operation

\[\text{meld}(H_1, H_2) : \text{return new heap with the keys from } H_1 \text{ and } H_2, \text{ destroying heaps } H_1 \text{ and } H_2. \]

As with \textit{splay} in splay trees, \textit{meld} is used to implement \textit{insert}, \textit{delete}, \textit{deletemin}.
Insert Implemented with Meld

\[\text{insert}(H, 9) \rightarrow \]

\[\text{meld} \]

Make a single-node heap

\[, \]
DeleteMin Implemented with Meld

deletemin(H) →

meld(,)

Are the npl values right in the subtrees?
Delete\((i)\) Implemented with Meld

delete(H, 6) →

Again, assume we have a pointer to the node containing 6.

Are we done?

No: must check to see if leftist property holds, and swap if not.

meld(

) →

Meld – finally....

meld(null, null) = null
meld(null, H) = H
meld(H, null) = H
meld(H₁, H₂) =

Assume \(m₁ \leq m₂ \)
Meld – finally....

meld(null, null) = null
meld(null, H) = H
meld(H, null) = H
meld(H₁, H₂) =

Make the new tree leftist...

If \(npl(right(m₁)) > npl(left(m₁)) \), swap the left & right children.

Finally, update rank of \(m₁ \):

\[npl(m₁) = 1 + npl(right(m₁)) \]
def meld(H1, H2):
 # the base cases with one or more empty trees
 if H1 == None: return H2
 if H2 == None: return H1

 # make H1 the heap with the smaller root value
 if H1.key > H2.key:
 H1, H2 = H2, H1

 H1.right = meld(H1.right, H2)

 # swap left and right subtrees if needed
 if H1.left == None or H1.left.npl < H1.right.npl:
 H1.left, H1.right = H1.right, H1.left

 # the null path length is one more that right child
 H1.npl = H1.right.npl + 1

 return H1
Meld Example

H₁

3

10

12

23

21

14

17

8

H₂

6

12

18

24

37

18

7

33

26

1

1

1
List Small Items

smallitems(H, r): return a list of keys < r

smallitems(H, 7.2) =

Preorder traversal, pruning trees with roots that are too large.

O(m) time, where m is the number of elements output.
Heapify

heapify(L): given a list of heaps H_1, H_2, \ldots, H_k, return a new heap that contains the union of keys in all of them.

(As usual, we’re allowed to destroy each H_i and the list.)

Treat L as a queue
Repeat until only 1 heap left:
1. meld the front two items
2. enqueue the resulting heap:

$L = [\text{triangle} \hspace{1cm} \text{triangle} \hspace{1cm} \text{triangle} \hspace{1cm} \text{triangle} \hspace{1cm} \text{triangle} \hspace{1cm} \text{triangle} \hspace{1cm} \text{triangle}]$
Lazy Deletion

Just mark nodes deleted; don’t actually change tree.

Now `delete(i)` and `deletemin()` are $O(1)$

During `findmin()`, do
preorder traversal, making
a list L of subtrees for which
all ancestors are deleted.

Heapify(L)
Skew Heaps

• Self-adjusting version of leftist heaps
• Don’t store \(npl \) (or any other auxiliary information at the nodes)

• Difference:
 - always swap the left & right subtrees at each step of meld
 - old rightmost path becomes new leftmost path

• Can show (beyond the scope of this class) that a series of \(m \) \(\text{insert, findmin, meld} \) operations take \(O(m \log n) \) time.
 - like splay trees, each operation takes \(O(\log n) \) amortized time.