kd-Trees

CMSC 420
kd-Trees

• Invented in 1970s by Jon Bentley
• Name originally meant “3d-trees, 4d-trees, etc” where k was the # of dimensions
• Now, people say “kd-tree of dimension d”

• Idea: Each level of the tree compares against 1 dimension.
• Let’s us have only two children at each node (instead of 2^d)
kd-trees

- Each level has a “cutting dimension”
- Cycle through the dimensions as you walk down the tree.
- Each node contains a point \(P = (x,y) \)
- To find \((x',y')\) you only compare coordinate from the cutting dimension
 - e.g. if cutting dimension is \(x\), then you ask: is \(x' < x\)?
kd-tree example

insert: (30,40), (5,25), (10,12), (70,70), (50,30), (35,45)
insert(Point x, KDNode t, int cd) {
 if t == null
 t = new KDNode(x)
 else if (x == t.data)
 // error! duplicate
 else if (x[cd] < t.data[cd])
 t.left = insert(x, t.left, (cd+1) % DIM)
 else
 t.right = insert(x, t.right, (cd+1) % DIM)
 return t
}
FindMin in kd-trees

• FindMin(d): find the point with the smallest value in the dth dimension.

• Recursively traverse the tree

• If cutdim(current_node) = d, then the minimum can’t be in the right subtree, so recurse on just the left subtree
 – if no left subtree, then current node is the min for tree rooted at this node.

• If cutdim(current_node) ≠ d, then minimum could be in either subtree, so recurse on both subtrees.
 – (unlike in 1-d structures, often have to explore several paths down the tree)
FindMin

FindMin(x-dimension):
FindMin

FindMin(y-dimension):

```
(1,10)  (10,30)  (25,40)  (50,50)  (35,90)  (60,80)  (70,70)
```

```
(51,75)  1,10
```

```
55,1
```

```
10,30
```

```
25,40
```

```
50,50
```

```
35,90
```

```
70,70
```

```
51,75
```

```
60,80
```
FindMin

FindMin(y-dimension): space searched
FindMin Code

Point findmin(Node T, int dim, int cd):
 // empty tree
 if T == NULL: return NULL

 // T splits on the dimension we’re searching
 // => only visit left subtree
 if cd == dim:
 if t.left == NULL: return t.data
 else return findmin(T.left, dim, (cd+1)%DIM)

 // T splits on a different dimension
 // => have to search both subtrees
 else:
 return minimum(
 findmin(T.left, dim, (cd+1)%DIM),
 findmin(T.right, dim, (cd+1)%DIM)
 T.data
)
Delete in kd-trees

Want to delete node A.
Assume cutting dimension of A is cd

In BST, we’d findmin(A.right).

Here, we have to findmin(A.right, cd)

Everything in Q has cd-coord < B, and everything in P has cd-coord ≥ B
Delete in kd-trees --- No Right Subtree

- What is right subtree is empty?
- Possible idea: Find the \max in the left subtree?
 - Why might this not work?
- Suppose I find $\max(T.left)$ and get point (a,b):

It's possible that $T.left$ contains another point with $x = a$.

Now, our equal coordinate invariant is violated!
No right subtree --- Solution

- Swap the subtrees of node to be deleted
- $B = \text{findmin}(T.\text{left})$
- Replace deleted node by B

Now, if there is another point with $x=a$, it appears in the right subtree, where it should
Point delete(Point x, Node T, int cd):
 if T == NULL: error point not found!
 next_cd = (cd+1)%DIM

 // This is the point to delete:
 if x = T.data:
 // use min(cd) from right subtree:
 if t.right != NULL:
 t.data = findmin(T.right, cd, next_cd)
 t.right = delete(t.data, t.right, next_cd)
 // swap subtrees and use min(cd) from new right:
 else if T.left != NULL:
 t.data = findmin(T.left, cd, next_cd)
 t.right = delete(t.data, t.left, next_cd)
 else
 t = null // we’re a leaf: just remove

 // this is not the point, so search for it:
 else if x[cd] < t.data[cd]:
 t.left = delete(x, t.left, next_cd)
 else
 t.right = delete(x, t.right, next_cd)

 return t
Nearest Neighbor Searching in kd-trees

- Nearest Neighbor Queries are very common: given a point Q find the point P in the data set that is closest to Q.
- Doesn’t work: find cell that would contain Q and return the point it contains.
 - Reason: the nearest point to P in space may be far from P in the tree:
 - E.g. NN(52,52):

```plaintext
(1,10)  (10,30)  (25,40)  (50,50)  (35,90)  (51,75)  (60,80)  (70,70)
```

```plaintext
(55,1)  (50,50)  (35,90)  (25,40)  (51,75)  (60,80)  (70,70)
```

```plaintext
1,10    10,30    25,40    51,75    55,1     60,80    70,70
```
kd-Trees Nearest Neighbor

- Idea: traverse the whole tree, **BUT make two modifications to prune to search space:**

 1. Keep variable of closest point C found so far. Prune subtrees once their bounding boxes say that they can’t contain any point closer than C

 2. Search the subtrees in order that maximizes the chance for pruning
Nearest Neighbor: Ideas, continued

If $d > \text{dist}(C, Q)$, then no point in $\text{BB}(T)$ can be closer to Q than C. Hence, no reason to search subtree rooted at T.

Update the best point so far, if T is better:
if $\text{dist}(C, Q) > \text{dist}(T.\text{data}, Q)$, $C := T.\text{data}$

Recurse, but start with the subtree “closer” to Q:
First search the subtree that would contain Q if we were inserting Q below T.
Nearest Neighbor, Code

```python
def NN(Point Q, kdTree T, int cd, Rect BB):
    // if this bounding box is too far, do nothing
    if T == NULL or distance(Q, BB) > best_dist: return

    // if this point is better than the best:
    dist = distance(Q, T.data)
    if dist < best_dist:
        best = T.data
        best_dist = dist

    // visit subtrees is most promising order:
    if Q[cd] < T.data[cd]:
        NN(Q, T.left, next_cd, BB.trimLeft(cd, t.data))
        NN(Q, T.right, next_cd, BB.trimRight(cd, t.data))
    else:
        NN(Q, T.right, next_cd, BB.trimRight(cd, t.data))
        NN(Q, T.left, next_cd, BB.trimLeft(cd, t.data))
```

Following Dave Mount’s Notes (page 77)
Nearest Neighbor Facts

• Might have to search close to the whole tree in the worst case. \[O(n)\]

• In practice, runtime is closer to:
 - \(O(2^d + \log n)\)
 - \(\log n\) to find cells “near” the query point
 - \(2^d\) to search around cells in that neighborhood

• Three important concepts that reoccur in range / nearest neighbor searching:
 - storing partial results: keep best so far, and update
 - pruning: reduce search space by eliminating irrelevant trees.
 - traversal order: visit the most promising subtree first.