Biologists want to be able to browse and search all the features of the genome.

We’re considering only genes, but there are lots more: implementation is similar.

Examples:
- ENCODE region browser
- Bacterial Browser
- USCD Genome Browser
Project Part 2b: DS for comparing genomes

- Overtime, genes can move in genome
- MUMMER is a tool developed here to compare two genomes:
 - Places a dot every place a sequence in 1 genome is found in the other genome
 - Uses suffix trees (which we’ll talk about soon)
- Project assumes you’re given the mapping between places (genes) on the genome & you have to answer region queries
MUMMER: another example

- Genomes more divergent (more shuffling)
- Xanthomonas
 - Bacteria
 - Common plant pathogen
Range Trees
1-Dimensional Range Trees

• Suppose you have “points” in 1-dimension (aka numbers)
• Want to answer range queries: “Return all keys between x_1 and x_2."
• How could you solve this?

Balanced Binary Search Tree
Range Queries on Binary Search Trees

Assume all data are in the leaves

Search for x_1 and x_2

Let x_{split} be the node were the search paths diverge

Output leaves in the right subtrees of nodes on the path from x_{split} to x_1

Output leaves in the left subtrees of nodes on the path from x_{split} to x_2
OneDRange(T, x1, x2):
 // walk until we find x\textsubscript{split}
 while not isLeaf(T) and (x\textsubscript{2} \leq T.data or x\textsubscript{1} > T.data):
 if x\textsubscript{2} \leq T.data:
 T = T.left
 else:
 T = T.right
 if isLeaf(T):
 if x\textsubscript{1} \leq T.data \leq x\textsubscript{2}: output(T.data)
 else:
 v = T
 // walk down from x\textsubscript{split} to x\textsubscript{1}
 10: while not isLeaf(v):
 if x\textsubscript{1} \leq v.data:
 output_subtree(v.right)
 v = v.left
 else:
 15: v = v.right

 // repeat lines 10-15,
 // except walk down the path to x\textsubscript{2}.
 // ... code not shown ...
1-D Query Time

- $O(k + \log n)$, where k is the number of points output.
 - Tree is balanced, so depth is $O(\log n)$
 - Length of paths to x_1 and x_2 are $O(\log n)$
 - Therefore visit $O(\log n)$ nodes to find the roots of subtrees to output
 - Traversing the subtrees is linear, $O(k)$, in the number of items output.
How would you generalize to 2d?
2d Range Trees

- Treat range query as 2 nested one-dimensional queries:
 - $[x_1, x_2]$ by $[y_1, y_2]$
 - First ask for the points with x-coordinates in the given range $[x_1, x_2] \Rightarrow$ a set of subtrees
 - Instead of all points in these subtrees, only want those that fall in $[y_1, y_2]$

$P(u)$ is the set of points under u

We store *those* points in another tree $Y(u)$, keyed by the y-dimension
Every node has a tree associated with it: \textit{multilevel} data structure.
Range Trees, continued.
2d-range tree space requirements

• Sum of the sizes of $Y(u)$ for u at a given depth is $O(n)$
 - Each point stored in the $Y(u)$ tree for at most one node at a given depth

• Since main tree is balanced, has $O(\log n)$ depth

• Meaning total space requirement is $O(n \log n)$
2d Range Tree Range Searches

1. First find trees that match the x-constraint;
2. Then output points in those subtrees that match the y-constraint (by 1-d range searching the associated Y(u) trees)

- Step 1 will return at most $O(\log n)$ subtrees to process.
- Step 2 will thus perform the following $O(\log n)$ times:
 - Range search the Y(u) tree. This takes $O(\log n + k_u)$, where k_u is the number of points output for that Y(u) tree.

- Total time is $\sum_u O(\log n + k_u)$ where u ranges over $O(\log n)$ nodes. Thus the total time is $O(\log^2 n + k)$.
2d Range Tree Demo
kd-tree vs. Range Tree

• 2d kd-tree:
 - Space = O(n)
 - Range Query Time = O(k + \sqrt{n})
 - Inserts O(log n)

• 2d Range Tree:
 - Space = O(n \log n)
 - Range Query Time = O(k + \log^2 n)
 - Inserts O(\log^2 n)
How would you extend this to > 2 dimensions?
Range Trees for $d > 2$

- Now, your associated trees $Y(u)$ themselves have associated trees $Z(v)$ and so on:

\begin{itemize}
 \item Searching: find $O(\log n)$ nodes in first tree for each of them, find another $O(\log n)$ sets for each of \textit{them} find another $\log n$ sets
\end{itemize}

Leads to $O(k + \log^d n)$ search time

Space: $O(n \log^{d-1} n)$ space
Fractional Cascading Speed-up: Idea

- Suppose you had two sorted arrays $A_1 A_2$
 - Elements in A_2 are subset of those in A_1
 - Want to range search in both arrays with the same range: $[x_1, x_2]$

- Simple:
 - Binary Search to find x_1 in both A_1 and A_2
 - Walk along array until you pass x_2

- $O(\log n)$ time for each Binary Search,
 - have to do it twice though
Can do better:

• Since A_2 subset of A_1:

 - Keep pointer at each element u of A_1 pointing to the smallest element of A_2 that is $\geq u$.

 - After Binary Search in A_1, use pointer to find where to start in A_2

• Can do similar in Range Trees to eliminate an $O(\log n)$ factor (see next slides)
Fractional Cascading in Range Trees

Instead of an aux. tree, we store an array, sorted by Y-coord. At x_{split}, we do a binary search for y_1. As we continue to search for x_1 and x_2, we also use pointers to keep track of the result of a binary search for y_1 in each of the arrays along the path.

(Only subset of pointers are shown)
Fractional Cascading Search

- RangeQuery([x1,x2] by [y1,y2]):
 - Search for x_{split}
 - Use binary search to find the first point in $A(x_{\text{split}})$ that is larger than y_1.
 - Continue searching for x_1 and x_2, following the now diverged paths
 - Let $u_1--u_2--u_3--u_k$ be the path to x_1. While following this path, use the “cascading” pointers to find the first point in each $A(u_i)$ that is larger than y_1. [similarly with the path $v_1--v_2--v_m$ to x_2]
 - If a child of u_i or v_i is the root of a subtree to output, then use a cascading pointer to find the first point larger than y_1, output all points until you pass y_2.
Fractional Cascading: Runtime

- Instead of $O(\log n)$ binary searches, you perform just one

- Therefore, $O(\log^2 n)$ becomes $O(\log n)$

- 2d-rectangle range queries in $O(\log n + k)$ time

- In d dimensions: $O(\log^{d-1} n + k)$