Modeling cell dynamics using graph rewriting

Cole Trapnell
Mike Lam
Goal

- High-resolution simulation of cellular and molecular biology
 - If model is correct, point predictions may be more accurate than available in wetlab
 - Easier and cheaper to alter the model than in wetlab
Example: EGF Pathway

Exterior

Cytosol
Example: EGF Pathway

Signaling
Our Work

• New domain-specific language EasyCell for expressing cell dynamics
• Implemented by translating into a graph rewriting language, GrGen
GrGen

- Graph rewriting environment
- Requires .NET 2.0 or Mono 1.2.5+
 - (and java 1.5+)
- Open source

Biologists are not programmers
GrGen:

rule EGFBinding {
 a:EGF;
 b:EGFR;
 negative {
 a --> b1:EGFR;
 }
 negative {
 a1:EGF --> b;
 }
 modify {
 a --> b;
 }
}
GrGen:

rule EGFBinding {
 a: EGF;
 b: EGFR;
 negative {
 a --> b1: EGFR;
 }
 negative {
 a1: EGF --> b;
 }
 modify {
 a --> b;
 }
}

EasyCell:

binding EGF binds EGFR produces ActiveEGFR;
domain SH2;
domain SH3;
domain PS;

protein EGF;
protein EGFR;

protein GRB2 {
 domain SH2[2];
 domain SH3;
};

protein SOS;

binding EGF binds EGFR produces ActiveEGFR;

binding ActiveEGFR binds ActiveEGFR produces EGFRDimer;
generator
 EGFR in ActiveEGFR in EGFRDimer
 produces PS;

binding
 SH3 in GRB2
 binds PS in EGFR in ActiveEGFR in EGFRDimer
 produces EGFRGRB2;

binding
 (SH2,SH2) in gg:GRB2
 where sh:SH3 in gg and sh in EGFRGRB2
 bind SOS
 produces EGFRGRB2SOS;

environment {
 EGF[2];
 EGFR[2];
 GRB2[6];
 SOS[6];
};
Demo
Future work

- ‘Inhibits’ statement
- Preferential binding
- Parameterized rules
- Standard library
- Scalability