Announcements

- Check class announcements daily
- You must implement programming projects by yourself
Project #5

Let’s talk about project #5
Usability: Frames

- **Frame**
 - Allows us to view several HTML documents in the same window
 - A page can be loaded in a frame while other stay constant
 - **Example:** http://java.sun.com/j2se/1.5.0/docs/api/index.html

- **Causes big problems from a usability point of view**
 - Bookmarking will not work as expected
 - Search engines have difficulties with frames
 - Printing can be problematic
 - Effects associated with frames can be achieved via CSS positioning and `<div>` tag.
Guidelines for an Usable Web Site

- **Visual Consistency** → When a new page is selected in a site it should be easy to identify it belongs to the same site
 - You can achieve consistency by
 - Using logos or banners
 - Keeping a consistent layout and configuration of elements. For example:
 - Navigation bar is consistent in its placement and appearance
 - Consistent coloring
 - If the layout is not consistent you can use identical colors and shape elements to make pages appear consistent

- **Navigation** → For an easily navigable site users should be clear about:
 - Where they will go when selecting a link
 - Where they are in the site
 - How to get back to a recognizable starting place
Guidelines for an Usable Web Site

- **Navigation: Approaches to organize a site**
 - **Sequential Organization** → Pages follow a certain order and are linked to one another in order. Appropriate for scenarios where:
 - Sequence of steps needed to complete a task are described
 - A story is told
 - Chronological information is presented
 - **Hierarchical Organization** → Appropriate for sites with a very large number of pages. A main page has categories with subcategories, etc. Users should know their position in the structure
 - **Web-based Organization** → Most common organizational structure
 - Web-like structure (should not force one of the organizations previously discussed)
 - Pages link to one another based on content
 - A page could be accessible only from one particular page
 - A page can connect many pages
 - Etc.
Guidelines for an Usable Web Site

- **Links**
 - Links names should be descriptive and indicate where the links go.
 - Rather than next, prev, up, down add a description of the nature of the page that will be reached.
 - “next: Weather in the USA”
 - “up: Courses at UMCP”

- **Search**
 - Search tools for an entire web site can help users find what they need.
 - The search should search the web site by default.
Security (Email)

- Least secure of internet protocols
- Avoid sending sensitive information (e.g., passwords) over e-mail
- Provide e-mail addresses in web sites in a way is not easily recognized by spam programs
 - Use at rather than @
 - Put an image with the e-mail
 - Avoid mailto
- Encrypt the message using PGP (Pretty Good Privacy) or GPG (GNU Privacy Guard)
- http://www.wbwip.com/wbw/emailencoder.html
Security (Password-Protected Sites)

❖ Approach not recommended
 ❖ Store encrypted password
 ❖ Decrypt password and compare against user provided password

❖ Better approach
 ❖ Store encrypted password
 ❖ Encrypt provided password and compare against stored password
Security (Encryption)

- **Encryption** → process of converting plaintext into ciphertext
- **Decryption** → process of converting ciphertext into plaintext
- **Symmetric cryptography** → sender and receiver share the same key
- **Asymmetric (Public Key) cryptography** → sender and receiver have different, complementary keys

Symmetric cryptography
- Relatively fast compared to asymmetric
- Drawbacks
 - Keys must be change frequently
 - How to distribute the key safely
Security (Encryption)

- Branches of public key cryptography
 - Public key encryption
 - Digital signatures
- Public key Encryption
 - Example algorithm: RSA
 - Relatively slowed compared to symmetric
 - How it works?
 - Each user has a public/private key pair.
 - Public key is widely known
 - Private key only known by user that generated it
 - If user A wants to send user B a message, user A encrypts message with B’s public key. B will decrypt the message with B’s private key. The only way to decrypt the message is by using B’s private key
- Digital signature
 - Message signed with sender’s private key can be verified by anyone with sender’s public key thereby proving message authenticity
Digital Certificates (Certificates)

- **Digital Certificates** → electronic documents that contain information about a public key and the owner (name, address, etc.)
- Employed to verify a public key corresponds to a particular organization
- Certificates must be issued by a trusted third party known as certificate authority (CA) which guarantees the information is correct
- **About certificates**
 - Have a validity period and can expire
 - They can be revoked
 - Browsers have a collection of root certificates
 - In Firefox – Tools→Options→Advanced→View Certificates
 - Main standard X.509
Message Digests

- Message digest → fixed-length representation of a message
- Expected properties for message digest ("Hashing") algorithm
 - Original message cannot be obtained from the digest
 - Two different messages should have different digests
- Example algorithms: MD5 and SHA
Need For Security

- **SSL (Secure Sockets Layer) Protocol** → Protocol that enable us to satisfy the need for security in client-web server transactions
- The algorithm provides support for confidentiality, integrity and authentication
- **SSL connection is established as follows:**
 - User connects to web server through the browser
 - Browser and server exchange public keys and certificate information
 - Browser checks server certificate validity (certificate not expired, issued by CA, etc.)
 - Optional: server can request a valid certificate from the client
 - Using public keys server and client determine a symmetric key to use
 - Communication from this point on is through symmetric cryptography
https

- **https** → http where
 - A different default port (443) is used
 - An extra layer of encryption/authentication exists between HTTP and TCP
- **https** → is not a separate protocol but a combination of HTTP over encrypted SSL or TLS transport mechanism
- **TLS** → Transport Layer Security
 - IETF standard designed to standardize SSL as an Internet protocol
 - Slight differences between SSL 3.0 and TLS 1.0
Security Sites

- www.securityfocus.com/
- www.cert.org/