CMSC 132: Object-Oriented Programming II

Minimal Spanning Tree Algorithms

Department of Computer Science
University of Maryland, College Park
Overview

- Spanning trees
- Minimum spanning tree (MST)
 - Prim’s algorithm
 - Kruskal’s algorithm
- Graph implementation
 - Adjacency list / matrix / set
Spanning Tree

- Set of edges connecting all nodes in graph
 - need $N-1$ edges for N nodes
 - no cycles, can be thought of as a tree
- Can build tree during traversal

(a) Graph G

(b) Spanning tree T of graph G
Spanning Tree Construction

Recursive algorithm

Known = { start }
explore (start);

void explore (Node X) {
 for each successor Y of X
 if (Y is not in Known)
 Parent[Y] = X
 Add Y to Known
 explore(Y)

}
Spanning Tree Construction

Iterative algorithm

Known = { start }
Discovered = { start }
while (Discovered ≠ ∅) {
 take node X out of Discovered
 for each successor Y of X
 if (Y is not in Known)
 Parent[Y] = X
 Add Y to Discovered
 Add Y to Known
}
Breadth & Depth First Spanning Trees

Breadth-first

Depth-first
Depth-First Spanning Tree Example
Breadth-First Spanning Tree Example
Spanning Tree Construction

Many spanning trees possible

- Different breadth-first traversals
 - Nodes same distance visited in different order
- Different depth-first traversals
 - Neighbors of node visited in different order
- Different traversals yield different spanning trees
Minimum Spanning Tree (MST)

Spanning tree with minimum total edge weight

(a) Graph G
(b) A spanning tree of cost $C = 43$
(c) A minimum spanning tree of cost $C = 28$
Minimum Spanning Tree (MST)

- Possible to have multiple MSTs
 - Different spanning trees with same weight

Example applications
- Minimize length of telephone lines for neighborhood
- Minimize distance of airplane routes serving cities
Algorithms for Finding MST

Three well known algorithms

1. Borůvka’s algorithm [1926]
 - For constructing efficient electricity network
 - Rediscovered by Sollin in 1960s

2. Prim’s algorithm [1957]
 - First discovered by Vojtěch Jarník in 1930
 - Similar to Djikstra’s algorithm

3. Kruskal’s algorithm [1956]
 - By Prof. Clyde Kruskal’s uncle
Algorithms for Finding MST

1. Borůvka’s algorithm
 - Add vertices to MST in parallel

2. Prim’s algorithm
 - Add vertices to MST
 - One at a time
 - Closest vertex first

3. Kruskal’s algorithm
 - Add edges to MST
 - One at a time
 - Lightest edge first
Shortest Path – Dijkstra’s Algorithm

S = ∅
P[] = none for all nodes
C[start] = 0, C[] = ∞ for all other nodes

while (not all nodes in S)
 find node K not in S with smallest C[K]
 add K to S
 for each node J not in S adjacent to K
 if (C[K] + cost of (K,J) < C[J])
 C[J] = C[K] + cost of (K,J)
P[J] = K

Optimal solution computed with greedy algorithm
MST – Prim’s Algorithm

S = ∅
P[] = none for all nodes
C[start] = 0, C[] = ∞ for all other nodes
while (not all nodes in S)
 find node K not in S with smallest C[K]
 add K to S
 for each node J not in S adjacent to K
 if (/* C[K] + */ cost of (K,J) < C[J])
 C[J] = /* C[K] + */ cost of (K,J)
 P[J] = K

Keeps track of vertex w/ minimal distance to current tree
Optimal solution computed with greedy algorithm
MST – Kruskal’s Algorithm

sort edges by weight (from least to most)

\[\text{tree} = \emptyset \]

for each edge \((X,Y)\) in order

if it does not create a cycle

\[\text{add (X,Y) to tree} \]

stop when tree has \(N-1\) edges

Keeps track of

- lightest edge remaining
- whether adding edge to MST creates cycle

Optimal solution computed with greedy algorithm
MST – Kruskal’s Algorithm Example
MST – Kruskal’s Algorithm

When does adding (X,Y) to tree create cycle?

Two approaches to finding cycles

1. Traversal
2. Connected subgraph
MST – Kruskal’s Algorithm

Traversal approach

- Traverse tree starting at X
- If we can reach Y, adding (X,Y) would create cycle

Example

- Question
 - Add (X,Y) to MST?
- Answer
 - No, since can already reach Y from X by traversing MST
MST – Kruskal’s Algorithm

• Connected subgraph approach
 - Maintain set of nodes for each connected subgraph
 - Initialize one connected subgraph for each node
 - If X, Y in same set, adding (X,Y) would create cycle
 - Otherwise
 1. Add edge (X,Y) to spanning tree
 2. Merge sets containing X, Y

• To test set membership
 - Use Union-Find algorithm
MST – Connected Subgraph Example

Original graph

MST

1. A
 B
2. A – 5 – B

Sets

1. \{A\} \{B\} \{C\} \{D\}
2. \{A, B\} \{C\} \{D\}

Ordered set of edges

1. \langle A, B \rangle 5
2. \langle A, C \rangle 9
3. \langle B, C \rangle 13
4. \langle C, D \rangle 15
5. \langle B, D \rangle 17

Edge being considered for addition

1. \langle A, B \rangle Include, since it connects two nodes in distinct sets
2. \langle A, C \rangle Include, since it connects two nodes in distinct sets
MST – Connected Subgraph Example

Original graph

Ordered set of edges

\(<A, B>\) 5
\(<A, C>\) 9
\(<B, C>\) 13
\(<C, D>\) 15
\(<B, D>\) 17

Sets

\{A, B, C\} \{D\}

Edge being considered for addition

\(<B, C>\) Reject, since it connects nodes in the same set and would create a cycle

\(<C, D>\) Include, since it connects two nodes in distinct sets

Finished
Union-Find Algorithm

Union-Find

- Algorithm & data structure
- Very efficient for testing membership in disjoint sets

Problem description

- Start with n nodes, each in different subgraph
- Support two operations
 - Find – are nodes x & y in same subgraph?
 - Union – merge subgraphs containing x & y
Union-Find Algorithm

Basic approach
- Each node has a parent pointer
- Find – follow parent pointer(s) to root of tree
- Union – point root of 1st tree to root of 2nd tree

Example
- Union(a, b) ; union(c , d); union(b, d)

```
  a   b   c   d
  a   c   d
  b
  a   c
  b   d
  a
  b   c
  d
```
Union-Find Algorithm

Path compression

- Speeds up future Find() operations
 1. Follow parent pointer(s) to root of tree
 2. Update all nodes along path to point to root

Example

Find(d)

So how fast is Union-Find?
Ackermann’s Function

Function

```c
int A(x, y) {
    if (x == 0)
        return y + 1;
    if (y == 0)
        return A(x - 1, 1);
    return A(x - 1, A(x, y - 1));
}
```

A() grows fast

- $A(2, 2) = 7$
- $A(3, 3) = 61$
- $A(4, 2) = 2^{65536} - 3$
- $A(4, 3) = 2^{2^{65536}} - 3$
- $A(4, 4) = 2^{2^{2^{65536}}} - 3$
Inverse Ackermann’s Function

Definition

- $\alpha(n)$ is the inverse Ackermann’s function
- $\alpha(n) = \text{the smallest } k \text{ such that } A(k,k) \geq n$

Fun fact

- $\alpha(\text{number of atoms in universe}) = 4$

Union-find

- A sequence of n operations requires $O(n \alpha(n))$ time
- Practically speaking, indistinguishable from $O(n)$
Graph Summary

- **Graph data structure**
 - Very useful in practice
 - Different representations

- **Many graph algorithms**
 - Traversal
 - Shortest path
 - Minimum spanning tree