CMSC 132:
Object-Oriented Programming II

Graphical User Interface (GUI)

Department of Computer Science
University of Maryland, College Park
Graphical User Interface (GUI)

User interface
- Interface between user and computer
- Both input and output
- Affects usability of computer

Interface improving with better hardware
- Switches & light bulbs
- Punch cards & teletype (typewriter)
- Keyboard & black/white monitor (text)
- Mouse & color monitor (graphics)
Model-View-Controller (MVC)

Model for GUI programming (Xerox PARC ’78)
Separates GUI into 3 components

1. Model ⇒ application data
2. View ⇒ visual interface
3. Controller ⇒ user interaction
MVC Model of GUI Design

- **Model**
 - Should perform actual work
 - Should be independent of the GUI
 - But can provide access methods

- **Controller**
 - Lets user control what work the program is doing
 - Design of controller depends on model

- **View**
 - Lets user see what the program is doing
 - Should not display what controller thinks is happening (base display on model, not controller)
Programming Models

Normal (control flow-based) Programming

- Approach
 - Start at main()
 - Continue until end of program or exit()

Event-driven Programming

- Event - Action or condition occurring outside normal flow of control of program (e.g., mouse clicks, keyboard input, etc.)
- Unable to predict time & occurrence of event
- Approach
 - Start with main()
 - Define system elements and register event listeners
 - Await events (& perform associated computation)
Event Handling in Action

Events

Registered Event Handlers

Can handle an event of type e_1

Execution Environment
GUIs are Event-Driven Software

User events invoke event handlers:

- `E_1`: changeFontSizeActionPerformed
- `E_2`: fileSaveActionPerformed
- `E_3`: newDocActionPerformed
- `E_4`: newDocActionPerformed
- `E_5`: newDocActionPerformed

Example Code

```java
public void newDocActionPerformed(ActionEvent evt) {
    // Implementation
}
```
Desktop Java Graphics APIs: From “Filthy Rich Clients”
by Chet Haase and Romain Guy, Chap1, Page 12
ISBN-978-0-13-241393-0
Book Web Site: http://www.filthyrichclients.org/
GUIs in Java

- AWT (Abstract Window Toolkit) (java.awt.*)
 - First graphical user interface toolkit for Java
 - Old GUI framework for Java (Java 1.1)
 - Reliance on native system libraries
 - Platform independence problems
 - Responsible for input event mechanisms

- Java 2D
 - Graphics Library of Java
 - Introduced in JDK 1.2
 - Basics and advance drawing operation, image manipulation, and drawing
 - Handles Swing’s Rendering operations

- Swing (javax.swing.*)
 - GUI framework first introduced in JDK 1.2
 - Includes AWT features plus many enhancements
 - Pure Java components (no reliance on native code)
 - Pluggable look and feel architecture

Some of this material is from “Filthy Rich Clients” (see reference in previous slide).
Steps for Creating a GUI in Java

1. Define a container to hold components
 - Examples: JFrame, JApplet...

2. Add GUI components to the container
 - Examples: JButton, JTextField, JScrollBar...
 - Use layout manager to determine positions

3. Add actions to GUI
 - Add event listeners to GUI components

4. Schedule the GUI processing in the EDT (Event-Dispatching Thread)
Step 1 (Define Container)

- Container Definition
 - Abstractions occupying space in GUI

- Properties
 - Usually contain one or more widgets
 - widget - actual item user can see
 - Can be nested in other containers

- Container Examples
 - JFrame, JDialog, JPanel, JScrollPane
Step 2 (Define Components)

Component Definition

- Actual items *(widgets)* user sees in GUI

Examples

- Labels *(fixed text)*
- Text areas *(for entering text)*
- Buttons
- Checkboxes
- Tables
- Menus
- Toolbars
- Etc…
Step 3 (Set Event Listeners)

Implementation
- Implement event listeners for each event
- Usually one event listener class per widget
- Inner class usually utilized to implement listener
- Register (add) listener object with widget object

At run time
- Java generates event object when events occur
- Java then passes event object to event listener

Example of Java listeners & Actions Causing Event
- ActionListener → clicking button in GUI
- CaretListener → selecting portion of text in GUI
- FocusListener → component gains / loses focus
- KeyListener → pressing key
- MouseListener → mouse clicked
- WindowListener → closing a window
Step 4 (Schedule GUI Processing in EDT)

- What is a thread?
- Event Dispatching Thread (EDT)
 - EDT is a background thread to process events
 - These events are mainly *updates* that
 - Cause components to redraw themselves
 - Represent input events
- Swing uses a single-threaded painting model
 - Event Dispatching thread is the only valid thread for updating GUI components
 - Avoid updating GUI components from other threads
 - A source of common bugs
Event Dispatching Thread

- Code that allows current thread to execute GUI code in dispatching thread

```java
public static void main(String[] args) {
    javax.swing.SwingUtilities.invokeLater(new Runnable() {
        public void run() {
            createAndDisplayGUI(); // actually creates GUI
        }
    });
}
```
Additional Resources

- Javadoc from the JDK
- Swing tutorial -
 http://java.sun.com/docs/books/tutorial/uiswing/components/
- Filthy Rich Clients
 http://filthyrichclients.org/