CMSC 330: Organization of Programming Languages

Theory of Regular Expressions

Last Lecture

- Ruby language
 - Regular expressions
 - Arrays
 - Code blocks
 - Hash
 - File
 - Exceptions

Introduction

- That's it for the basics of Ruby
 - If you need other material for your project, come to office hours or check out the documentation

- Next up: How do regular expressions (REs) really work?
 - Mixture of a very practical tool (string matching with REs) and some nice theory
 - A great computer science result

A Few Questions About REs

- What does a regular expression represent?
 - Just a set of strings

- What are the basic components of REs?
 - E.g., we saw that e+ is the same as ee*

- How are REs implemented?
 - We'll see how to build a structure to parse REs

Definition: Alphabet

- An alphabet is a finite set of symbols
 - Usually denoted Σ

- Example alphabets:
 - Binary: Σ = {0, 1}
 - Decimal: Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
 - Alphanumeric: Σ = {0-9, a-z, A-Z}

Definition: String

- A string is a finite sequence of symbols from Σ
 - ε is the empty string ("" in Ruby)
 - |s| is the length of string s
 - |Hello| = 5, |ε| = 0
 - Note: Ø is the empty set (with 0 elements); Ø ≠ {ε}

- Example strings:
 - 0101 ∈ Σ = {0, 1} (binary)
 - 0101 ∈ Σ = decimal
 - 0101 ∈ Σ = alphanumeric
Definition: Concatenation

- ** Concatenation is indicated by juxtaposition
 - If $s_1 = \text{super}$ and $s_2 = \text{hero}$, then $s_1 s_2 = \text{superhero}$
 - Sometimes also written $s_1 \cdot s_2$
 - For any string s, we have $s \varepsilon = \varepsilon s = s$
 - You can concatenate strings from different alphabets, then the new alphabet is the union of the originals:
 - If $s_1 = \text{super} \in \Sigma_1 = \{s,u,p,e,r\}$ and $s_2 = \text{hero} \in \Sigma_2 = \{h,e,r,o\}$,
 then $s_1 s_2 = \text{superhero} \in \Sigma_3 = \{e,h,o,p,r,s,u\}$

Definition: Language

- A **language** is a set of strings over an alphabet
- Example: The set of phone numbers over the alphabet $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 9, (,), -\}$
 - Give an example element of this language (123) 456-7890
 - Are all strings over the alphabet in the language? No
 - Is there a Ruby regular expression for this language?
 \(/(\d{3,3})\ \d{3,3}-\d{4,4}/\)
- Example: The set of all strings over Σ
 - Often written Σ^*

Definition: Language (cont.)

- Example: The set of strings of length 0 over the alphabet $\Sigma = \{a, b, c\}$
 - $\{s | s \in \Sigma^* \text{ and } |s| = 0\} = \{\varepsilon\} \neq \emptyset$
- Example: The set of all valid Ruby programs
 - Is there a Ruby regular expression for this language? No. Matching (an arbitrary number of) brackets so that they are balanced is impossible. \{ { ... } \}
- Can REs represent all possible languages?
 - The answer turns out to be no!
 - The languages represented by regular expressions are called, appropriately, the regular languages

Operations on Languages

- Let Σ be an alphabet and let L, L_1, L_2 be languages over Σ
- Concatenation $L_1 L_2$ is defined as
 - $L_1 L_2 = \{xy | x \in L_1 \text{ and } y \in L_2\}$
- Example: $L_1 = \{\text{hi}^*, \text{bye}^*\}$, $L_2 = \{1^*, \ 2^*\}$
 - $L_1 L_2 = \{\text{hi1}, \text{hi2}, \text{bye1}, \text{bye2}\}$
- Union is defined as
 - $L_1 \cup L_2 = \{x | x \in L_1 \text{ or } x \in L_2\}$
- Example: $L_1 = \{\text{hi}^*, \text{bye}^*\}$, $L_2 = \{1^*, \ 2^*\}$
 - $L_1 \cup L_2 = \{\text{hi}, \text{bye}, \ 1^*, \ 2^*\}$

Operations on Languages (cont.)

- Define L^n inductively as
 - $L^0 = \{\varepsilon\}$
 - $L^n = LL^{n-1}$ for $n > 0$
- In other words,
 - $L^1 = LL^0 = L\{\varepsilon\} = L$
 - $L^2 = LL^1 = LL$
 - $L^3 = LL^2 = LLL$
 - …

Examples of L^n

- Let $L = \{a, b, c\}$
- Then
 - $L^0 = \{\varepsilon\}$
 - $L^1 = \{a, b, c\}$
 - $L^2 = \{aa, ab, ac, ba, bb, bc, ca, cb, cc\}$
Operations on Languages (cont.)

- **Kleene closure** is defined as
 \[L^* = \bigcup_{i \in \mathbb{Z}_{\geq 0}} L^i \]

- In other words...
 \[L^* \] is the language (set of all strings) formed by concatenating together zero or more strings from \(L \).

Definition: Regular Expressions

- Given an alphabet \(\Sigma \), the regular expressions over \(\Sigma \) are defined inductively as:

<table>
<thead>
<tr>
<th>regular expression</th>
<th>denotes language</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>(\epsilon)</td>
<td>({ \epsilon })</td>
</tr>
<tr>
<td>each element (\sigma \in \Sigma)</td>
<td>({ \sigma })</td>
</tr>
</tbody>
</table>

Constants

Definition: Regular Expressions (cont.)

- Let \(A \) and \(B \) be regular expressions denoting languages \(L_A \) and \(L_B \), respectively

<table>
<thead>
<tr>
<th>regular expression</th>
<th>denotes language</th>
</tr>
</thead>
<tbody>
<tr>
<td>(AB)</td>
<td>(L_A L_B)</td>
</tr>
<tr>
<td>((A</td>
<td>B))</td>
</tr>
<tr>
<td>(A^*)</td>
<td>(L_A^*)</td>
</tr>
</tbody>
</table>

Operations

- There are no other regular expressions over \(\Sigma \).

Precedence

- Order in which operators are applied

 - In arithmetic

 - Multiplication \(\times \) > addition \(+ \)

 - \(2 \times 3 + 4 = (2 \times 3) + 4 = 10 \)

 - In regular expressions

 - Kleene closure \(* \) > concatenation \(\cdot \) > union \(| \)

 - \(ab|c = \{ a \ b \} \cup \{ \epsilon, b, c \} \)

 - \(ab^* = a \{ b^* \} = \{ a, ab, ab^2, \ldots \} \)

 - \(ab|^* = a \{ b^* \} = \{ a, a^2, b, \ldots \} \)

 - Can change order using parentheses ()

 - E.g., \(a(b|c), (ab)^* \)

The Language Denoted by an RE

- For a regular expression \(e \), we will write \(\llbracket e \rrbracket \) to mean the language denoted by \(e \)

 - \(\llbracket a \rrbracket = \{ a \} \)

 - \(\llbracket (a|b) \rrbracket = \{ a, b \} \)

- If \(s \in \llbracket \text{RE} \rrbracket \), we say that RE accepts, describes, or recognizes \(s \)

Example 1

- All strings over \(\Sigma = \{ a, b, c \} \) such that all the \(a \)'s are first, the \(b \)'s are next, and the \(c \)'s last

 - Example: \(aabbbccc \) but not \(abcb \)
- Regexp: \(a^*b^*c^* \)

 - This is a valid regexp because:

 - \(a \) is a regexp \(\llbracket a \rrbracket = \{ a \} \)

 - \(a^* \) is a regexp \(\llbracket a^* \rrbracket = \{ \epsilon, a, aa, \ldots \} \)

 - Similarly for \(b^* \) and \(c^* \)

 - So \(a^*b^*c^* \) is a regular expression

 (Remember that we need to check this way because regular expressions are defined inductively.)
Which Strings Does a*b*c* Recognize?

<table>
<thead>
<tr>
<th>String</th>
<th>Recognition</th>
</tr>
</thead>
<tbody>
<tr>
<td>aabbbcc</td>
<td>Yes; $aa \in [a^]$, $bbb \in [b^]$, and $cc \in [c^*]$, so entire string is in $[a^*b^c^]$</td>
</tr>
<tr>
<td>abb</td>
<td>Yes; $abb = abbe$, and $\epsilon \in [c^*]$</td>
</tr>
<tr>
<td>ac</td>
<td>Yes</td>
</tr>
<tr>
<td>ϵ</td>
<td>Yes</td>
</tr>
<tr>
<td>aacbc</td>
<td>No</td>
</tr>
<tr>
<td>abcd</td>
<td>No -- outside the language</td>
</tr>
</tbody>
</table>

Example 2

- All strings over $\Sigma = \{a, b, c\}$
- Regex: $(a|b|c)^*$
- Other regular expressions for the same language:
 - $(c|b|a)^*$
 - $(a^*|b^*|c^*)^*$
 - $(a*b*c*)^*$
 - $(a|b|c)^*[abc]$
 - etc.

Example 3

- All whole numbers containing the substring 330
- Regular expression: $(0[1|...|9]*330[0|1|...|9]^*)$
- What if we want to get rid of leading 0's?
- $((1[...|9])(0|1|...|9)^*330(0|1|...|9)^* | 330(0|1|...|9)^*)$
- Any other solutions?

Challenge: What about all whole numbers not containing the substring 330?
- Is it recognized by a regexp?
 - Yes. We’ll see how to find it later…

Example 4

- What is the English description for the language that $(10|0)^*(10|1)^*$ denotes?
 - $(10|0)^*$
 - 0 may appear anywhere
 - 1 must always be followed by 0
 - $(10|1)^*$
 - 1 may appear anywhere
 - 0 must always be preceded by 1
 - Put together, all strings of 0's and 1's where every pair of adjacent 0's precedes any pair of adjacent 1's
 - i.e., no 00 may appear after 11

Example 5

- What language does this regular expression recognize?
 - $(1|e)(0|1|...|9) | (2(0|1|2|3)): (0|1|...|5)(0|1|...|9)$
- All valid times written in 24-hour format
 - 10:17
 - 23:59
 - 0:45
 - 8:30
Two More Examples

- \((000|00|1)^*\)
 - Any string of 0's and 1's with no single 0's
- \((00|0000)^*\)
 - Strings with an even number of 0's
 - Notice that some strings can be accepted more than one way
 - \(000000 = 00\cdot00\cdot00 = 00\cdot0000 = 0000\cdot00\)
 - How else could we express this language?
 - \((00)^*\)
 - \((00|0000|^*)\)
 - \((00|0000|000000)^*\)
 - etc...

Regular Languages

- The languages that can be described using regular expressions are the regular languages or regular sets
- Not all languages are regular
 - Examples (without proof):
 - The set of palindromes over \(\Sigma\)
 - reads the same backward or forward
 - \(\{a^n b^n \mid n > 0\}\) (\(a^n = \text{sequence of } n \text{ a's}\))
- Almost all programming languages are not regular
 - But aspects of them sometimes are (e.g., identifiers)
 - Regular expressions are commonly used in parsing tools

Ruby Regular Expressions

- Almost all of the features we've seen for Ruby REs can be reduced to this formal definition
 - /Ruby/ – concatenation of single-character REs
 - /Ruby(Ruby)/ – union
 - /Ruby|/ – Kleene closure
 - /Ruby+/ – same as (Ruby)(Ruby)*
 - /Ruby?/ – same as ((Ruby))? (// is \(\varepsilon\))
 - /[a-z]/ – same as (a|b|c|...|z)
 - /[^0-9]/ – same as a,b,c,... \(\in \Sigma - \{0..9\}\)
 - ^, $ – correspond to extra characters in alphabet

Summary

- Languages
 - Sets of strings
 - Operations on languages
- Regular expressions
 - Constants
 - Operators
 - Precedence