CMSC 330: Organization of Programming Languages

Finite Automata

Last Lecture
- Languages
 - Sets of strings
 - Operations on languages
- Regular expressions
 - Constants
 - Operators
 - Precedence

This Lecture
- Finite automata
 - States
 - Transitions
 - Examples
- Types
 - Deterministic (DFA)
 - Non-deterministic (NFA)

Implementing Regular Expressions
- We can implement a regular expression by turning it into a finite automaton
 - A "machine" for recognizing a regular language

"String" "String" "String" "String"
Yes No

Finite Automata
- Machine starts in start or initial state
- Repeat until the end of the string is reached
 - Scan the next symbol s of the string
 - Take transition edge labeled with s
- String is accepted if automaton is in final state when end of string reached

Finite Automata: States
- Start state
 - State with incoming transition from no other state
 - Can have only 1 start state
- Final state
 - State with double circle
 - Can have 0 or more final states
What Language is This?

- All strings over \(\{0, 1\}\) that end in 1
- What is a regular expression for this language?
 \((0|1)^*1\)

Dead State: Shorthand Notation

- If a transition is omitted, assume it goes to a dead state that is not shown

Language?

- Strings over \(\{0, 1, 2, 3\}\) with alternating even and odd digits, beginning with odd digit
Practice

Give the English descriptions and the DFA or regular expression of the following languages:

- ((0|1)(0|1)(0|1)(0|1)(0|1))^*
 - All strings with length a multiple of 5
- (01)^*|(10)^*|(01)^*0|(10)^*1
 - All alternating binary strings

Practice

Give the regular expressions and finite automata for the following languages:

- You and your neighbors’ names
- All protein-coding DNA strings (including only ATCG and appearing in multiples of 3)
- All binary strings containing an even length substring of all 1’s
- All binary strings containing exactly two 1’s
- All binary strings that start and end with the same number

Types of Finite Automata

- **Deterministic Finite Automata (DFA)**
 - Exactly one sequence of steps for each string
 - All examples so far

- **Nondeterministic Finite Automata (NFA)**
 - May have many sequences of steps for each string
 - More compact

Formal Definition

- A deterministic finite automaton (DFA) is a 5-tuple \((\Sigma, Q, q_0, F, \delta)\) where
 - \(\Sigma\) is an alphabet
 - \(Q\) is a nonempty set of states
 - \(q_0 \in Q\) is the start state
 - \(F \subseteq Q\) is the set of final states
 - \(\delta : Q \times \Sigma \rightarrow Q\) specifies the DFA’s transitions
 - How many can there be?
 - \(\delta\) is what's this definition saying that \(\delta\) is?
- A DFA accepts \(s\) if it stops at a final state on \(s\)
Formal Definition: Example

- $\Sigma = \{0, 1\}$
- $Q = \{S_0, S_1\}$
- $q_0 = S_0$
- $F = \{S_1\}$

\[\delta\]

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_0</td>
<td>S_0</td>
<td>S_1</td>
</tr>
<tr>
<td>S_1</td>
<td>S_0</td>
<td>S_1</td>
</tr>
</tbody>
</table>

DFA Requirements

- Cannot have more than one transition leaving a state on the same symbol
 - I.e., transition function must be a valid function
- Cannot have transitions with empty labels
 - Transitions must be labeled by alphabet symbols
- NFAs do not have these requirements!
 - DFA is a special case of NFA

Nondeterministic Finite Automata (NFA)

- An NFA is a 5-tuple $(\Sigma, Q, q_0, F, \delta)$ where
 - Σ is an alphabet
 - Q is a nonempty set of states
 - $q_0 \in Q$ is the start state
 - $F \subseteq Q$ is the set of final states
 - $\delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times Q$ specifies the NFA’s transitions
 - Transitions on ϵ are allowed – can optionally take these transitions without consuming any input
 - Can have more than one transition for a given state and symbol
- An NFA accepts s if there is at least one path from its start to final state on s

NFA for $(a|b)^*abb$

- ba
 - Has paths to either S_0 or S_1
 - Neither is final, so rejected
- $babaabb$
 - Has paths to different states
 - One leads to S_3, so accepted

Another example DFA

- Language?
 - $(a|b|aba)^*$

NFA for $(a|b|aba)^*$

- aba
 - Has paths to states S_0, S_1
- $ababa$
 - Has paths to S_0, S_1
 - Need to use ϵ-transition
Relating REs to DFAs and NFAs

- Regular expressions, NFAs, and DFAs accept the same languages!

Reducing Regular Expressions to NFAs

- Goal: Given regular expression e, construct NFA: $<e> = (\Sigma, Q, q_0, F, \delta)$
 - Remember regular expressions are defined recursively from primitive RE languages
 - Invariant: $|F| = 1$ in our NFAs
 - Recall F = set of final states

- Base case: a
 - $<a> = (\{a\}, \{S0, S1\}, S0, \{S1\}, \{(S0, a, S1)\})$

Reduction (cont.)

- Base case: ϵ
 - $<\epsilon> = (\epsilon, \{S0, S0\}, S0, \{S1\}, \emptyset)$

- Base case: \emptyset
 - $<\emptyset> = (\emptyset, \{S0, S1\}, S0, \{S1\}, \emptyset)$

Reduction: Concatenation

- Induction: AB
 - $<A> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
 - $ = (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)$
 - $<AB> = (\Sigma_A \cup \Sigma_B, Q_A \cup Q_B, q_0, \{f_B\}, \delta_A \cup \delta_B \cup \{(f_A, \epsilon, q_B)\})$

Reduction: Union

- Induction: $(A|B)$
Reduction: Union (cont.)

- Induction: \((A \cup B)\)

\[
\begin{align*}
\langle A \rangle &= (\Sigma_A, Q_A, q_A, f_A, \delta_A) \\
\langle B \rangle &= (\Sigma_B, Q_B, q_B, f_B, \delta_B) \\
\langle (A \cup B) \rangle &= (\Sigma_A \cup \Sigma_B, Q_A \cup Q_B, (S_0, S_1), S_0, (S_1), \\
& \quad \delta_A \cup \delta_B ((S_0, \epsilon, q_A), (S_0, \epsilon, S_1), (f_A, \epsilon, S_1)))
\end{align*}
\]

Reduction: Closure

- Induction: \(A^*\)

\[
\begin{align*}
\langle A \rangle &= (\Sigma_A, Q_A, q_A, f_A, \delta_A) \\
\langle A^* \rangle &= (\Sigma_A, Q_A \cup \{S_0, S_1\}, S_0, \{S_1\}, \\
& \quad \delta_A \cup \{(f_A, \epsilon, S_1), (S_0, \epsilon, q_A), (S_0, \epsilon, S_1), (S_1, \epsilon, S_0)\})
\end{align*}
\]

Reduction: Closure (cont.)

- Induction: \(A^*\)

\[
\begin{align*}
\langle A \rangle &= (\Sigma_A, Q_A, q_A, f_A, \delta_A) \\
\langle A^* \rangle &= (\Sigma_A, Q_A \cup \{S_0, S_1\}, S_0, \{S_1\}, \\
& \quad \delta_A \cup \{(f_A, \epsilon, S_1), (S_0, \epsilon, q_A), (S_0, \epsilon, S_1), (S_1, \epsilon, S_0)\})
\end{align*}
\]

Reduction Complexity

- Given a regular expression \(A\) of size \(n\)...
 \begin{align*}
 \text{Size} &= \text{# of symbols} + \text{# of operations} \\
 \end{align*}

- How many states does \(\langle A \rangle\) have?

 - 2 added for each \(|\), 2 added for each \(*\)

 - \(O(n)\)

 - That’s pretty good!

Practice

- Draw NFAs for the following regular expressions and languages

 - \((0|1)^*110^*\)

 - \(101^*111\)

 - all binary strings ending in 1 (odd numbers)

 - all alphabetic strings which come after “hello” in alphabetic order

 - \((ab^*cd^*ejab)d\)

Summary

- Finite automata

 - Deterministic (DFA)

 - Non-deterministic (NFA)

- Questions

 - How are DFAs and NFAs different?

 - When does an NFA accept a string?

 - How to convert regular expression to an NFA?