Write all answers in the answers book provided.
• You can keep the exam. Only return the answers book.
• You are allowed to consult one letter-size paper, handwritten on one side. Besides that, the exam is closed book, closed notes.
• There are 8 question, totaling 110 points, in this exam. You have 1 hour and 20 minutes to finish it.

(1) (20 points) What is the output of each Ruby program below? Ignore any possible warning message.
(a) puts("ab" +
 if nil
 "cd"
 else
 "ef"
 end)
(b) a = b = ["c", "a", "b"]
a = a.sort
puts b
(c) a = [1, 2, 3]
b = ["x", "y"]
c = [a, b, [a, b]]
puts c[-1][0]
(d) h = Hash.new(0)
h["a"] = h["b"]
h["b"] = 7
h["c"] += 2
puts "#{h["a"]} #{h["b"]} #{h["c"]}"

(2) (10 points) Write a Ruby program that reads several lines from the input, and prints only the lines that contain exclusively the following characters: uppercase and lowercase letters, digits, and underscore. For example, lines that contain space or punctuation should not be printed.

(3) (21 points) Write a formal regular expression for each of the languages below. The alphabet is Σ = {a, b}. The only operators allowed are concatenation, * and | (do not write a Ruby regular expression).
(a) \{w | w begins with a and ends with a \}
(b) \{w | all a’s are immediately followed by b in w \}
(c) The union of the two languages above.
(4) (8 points) Write a formal regular expression the language below. The alphabet is \(\Sigma = \{a, b, c\} \). The only operators allowed are concatenation, * and | (do not write a Ruby regular expression).

\[\{w \mid \text{all consonants are adjacent to a consonant on at least one side in } w \} \]

Notice that \(b \) and \(c \) are the only consonants in the alphabet \(\Sigma \). For example, \(a \), \(bb \), \(bc \), and \(aabbabcba \) are in the language, but \(b \), \(ab \), and \(aba \) are not.

(5) (21 points) Write a DFA for each of the languages below. The alphabet is \(\Sigma = \{a, b\} \).

(a) \(\{w \mid w \text{ contains at most one } b \} \)

(b) \(\{w \mid \#a(w) = 0 \text{ (mod 2) and } \#b(w) \neq 0 \text{ (mod 3) } \} \)

(c) \(\{w \mid w \text{ ends with } aab \} \)

(6) (10 points) Convert the following NFA to a NFA without \(\varepsilon \) transitions.

(7) (10 points) Convert the following NFA without \(\varepsilon \) transitions to a DFA.

(8) (10 points) Convert the following formal regular expression to a NFA:

\[(((a|b|c)^*cc(a|b))^* \]