1. (14 pts) Context Free Grammars & Automata
 a. (2 pts) Explain how context free grammars are used for programming languages.
 CGFs are used to precisely specify syntax of programming languages
 b. (2 pts) Describe the relationship between derivations and sentential forms.
 Sentential forms are the strings produced by derivations
 c. (2 pts) Describe the language accepted by the grammar: $S \rightarrow aaSb | aSb | \varepsilon$
 $a^x b^y$, where $2y \geq x \geq y$, and $x,y \geq 0$
 d. (4 pts) Write a grammar for $a^x b^y z$, where $z = 2x - y$, for $x,y,z \geq 0$
 $S \rightarrow aSa | aLba | L$
 $L \rightarrow aLbb | \varepsilon$
 1 pt for odd ($S \rightarrow aLba$)
 e. (2 pts) Name features needed by automata to recognize all binary numbers with more 1’s than 0’s.
 DFA and stack (since language recognizable with simple CFG)
 f. (2 pts) Explain why a finite automaton with 2 stacks can recognize many more languages than a finite automaton with 1 stack.
 2 stacks can simulate a tape, yielding a Turing machine

2. (14 pts) Derivations, Parse Trees, Precedence and Associativity
 For the following grammar: $S \rightarrow S$ and $S \mid \text{not } S \mid \text{true} \mid \text{false}$
 a. (4 pts) List all left-most derivations for the string “not true and true”
 D1: $S \Rightarrow S$ and $S \Rightarrow \text{not } S$ and $S \Rightarrow \text{not true}$ and $S \Rightarrow \text{not true and true}$
 D2: $S \Rightarrow \text{not } S$ and $S \Rightarrow \text{not } S$ and $S \Rightarrow \text{not true}$ and $S \Rightarrow \text{not true and true}$
 b. (2 pts) Draw the parse tree for one of the left-most derivations above.

 ![Tree 1](image1)
 ![Tree 2](image2)

 where $D1 \rightarrow \text{Tree 1}$, $D2 \rightarrow \text{Tree 2}$
 c. (6 pts) Rewrite the grammar so that “and” is left associative and has lower precedence than “not”.
 $S \rightarrow S$ and $L \mid L$
 $L \rightarrow \text{not } L \mid \text{true} \mid \text{false}$
 d. (2 pts) Is your rewritten grammar ambiguous?
 No
3. (16 pts) Parsing
For the problem, assume the term “predictive parser” refers to a top-down, non-backtracking, recursive descent parser.

a. (10 pts) Consider the following grammar:
 \[S \to Ac \mid b \quad A \to aS \mid \varepsilon \]
 i. (4 pts) Compute First sets for each production and nonterminal
 \[\text{First}(aS) = \{ a \} \]
 \[\text{First}(\varepsilon) = \{ \} \]
 \[\text{First}(A) = \text{First}(aS) \cup \text{First}(\varepsilon) = \{ a, \varepsilon \} \]
 \[\text{First}(Ac) = \{ \text{First}(A) - \varepsilon \} \cup \text{First}(c) = \{ a \} \cup \{ c \} = \{ a, c \} \]
 \[\text{First}(b) = \{ b \} \]
 \[\text{First}(S) = \text{First}(Ac) \cup \text{First}(b) = \{ a, b, c \} \]

 ii. (4 pts) Write a predictive parser for the grammar
 \[
 \text{parse}_S() \{
 \text{if} \ (\text{lookahead} == \text{“a”}) \ || \ (\text{lookahead} == \text{“c”}) \ { \text{parse}_A();} \ \\
 \text{match(“c});}
 \text{else if} \ (\text{lookahead} == \text{“b”}) \ { \text{parse}_S();} \ \\
 \text{match(“b});}
 \text{else error();}
 \}
 \]
 \[
 \text{parse}_A() \{
 \text{If} \ (\text{lookahead} == \text{“a”}) \ { \text{parse}_S();} \ \\
 \text{match(“a});}
 \text{else ;}
 \}
 \]

 iii. (2 pts) Use your parser to parse the string “abc”. Show the sequence of calls in the parse, and what symbols remain at each point.
 \[
 \text{Parse “abc” \quad Remaining} \\
 \text{parse}_S() \quad \text{“abc”} \\
 \text{parse}_A() \quad \text{“abc”} \\
 \text{match(“a”) \quad \text{“abc”}} \\
 \text{parse}_S() \quad \text{“bc”} \\
 \text{match(“b”) \quad \text{“bc”}} \\
 \text{match(“c”) \quad \text{“c”}} \\
 \]
 \]}
b. (6 pts) Consider the following grammar: $S \rightarrow aSc \mid ab \mid a$

i. (2 pts) Show why the grammar cannot be parsed by a predictive parser.

First(aSc) \cap First(ab) = \{ a \} \cap \{ a \} = \{ a \} \neq \emptyset

First sets of productions for S overlap \rightarrow grammar not predictive

ii. (4 pts) Rewrite the grammar so it can be parsed by a predictive parser, using the rules presented in class for left factoring & eliminating left recursion.

\[
S \rightarrow aL \\
L \rightarrow Sc \mid b \mid \epsilon
\]

4. (8 pts) OCaml and Functional Programming

a. (2 pts) Describe one advantage of functional programming

\textbf{Programs easier to analyze than imperative programs. No aliasing}

b. (2 pts) Describe the difference between the usage of “;” and “,” in OCaml

\textbf{Semicolon separates expressions or elements of a list (when enclosed by square brackets), comma separates elements of a tuple}

c. (2 pts) Describe the relationship between type inference and polymorphic types

\textbf{Type inference assigns polymorphic types to variables that have multiple possible types based on how they’re used in the code}

d. (2 pts) Describe the difference between function pointers and closures

\textbf{Closures include both a function pointer and an environment}

5. (10 pts) OCaml Types & Type Inference 1

Give the type of the following OCaml expressions:

a. (2 pts) [1,"bar"] // (int * string) list

b. (2 pts) let rec f x = match x with // int list -> int list

\[
[] \rightarrow [] \\
(\text{h::t}) \rightarrow (h+1)::(f\ t)
\]

c. (2 pts) let f (x::y) = [y;[x]] // ‘a list -> ‘a list list

d. (4 pts) let f x y z = y x // 'a -> ('a -> 'b) -> 'c -> 'b

6. (12 pts) OCaml Types & Type Inference 2

Write an OCaml expression with the following types:

a. (2 pts) string list list // [[“foo”]]

b. (4 pts) ’a * (’b list) -> (’a * ’b) list // let f (x,y::_) = [x,y]

c. (6 pts) (int -> ’a) -> (int -> ’a) // let f x y = x (y+1)

7. (12 pts) OCaml Programs

What are the values of the following OCaml expressions? If an error exists, describe the error.

a. (2 pts) 1 + 2 ; 3 + 4 // 7

b. (2 pts) [1,"foo"] // mixed types in list, “foo” has type string but used with int

c. (2 pts) let x = 1 in let y = x+2 in let x = y+3 in x+4 // 10

d. (3 pts) let x y = fun z -> z+y in x 1 2 // 3

e. (3 pts) let x y = fun z -> y z in x (fun x -> x+3) 4 // 7
8. (26 pts) OCaml Programming
 For the following problems, you may use helper functions, but no library functions.
 You are given the curried version of the fold function:
 \[
 \text{let rec fold } f \ a \ l \ = \ \text{match } l \ \text{with} \\
 \[] \rightarrow a \\
 \l (h::t) \rightarrow \text{fold } f \ (f \ a \ h) \ t
 \]

 a. (4 pts) Using the curried version of the \textit{fold} function, write an OCaml function named \textit{reverse} that when applied to a list \textit{lst} returns the list in reverse order.
 Example: reverse \([1;3;5;2;4] = [4;2;5;3;1]\)
 \[
 \text{let reverse } lst = \text{fold } (\text{fun } a \ h \rightarrow h::a) \ [] \ lst
 \]

 b. (10 pts) Using the curried version of the \textit{fold} function, write an OCaml function named \textit{filter} with type \((\text{\texttt{a}} \rightarrow \text{\texttt{bool}}) \rightarrow \text{\texttt{a}} \text{\texttt{list}} \rightarrow \text{\texttt{a}} \text{\texttt{list}}\) that takes two arguments: a predicate function \textit{pred} with type \((\text{\texttt{a}} \rightarrow \text{\texttt{bool}})\), and list \textit{lst} with type \((\text{\texttt{a}} \text{\texttt{list}})\). \textit{filter} returns only the elements of \textit{lst} that return true when evaluated by \textit{pred}. The filtered elements must be returned in their order in \textit{lst}. You may use the reverse function above.
 Example: filter \((\text{fun } x \rightarrow (x > 2))\) \([1;3;5;2;4] = [3;5;4]\)
 \[
 \text{let filter } \textit{pred} \ \textit{lst} = \text{reverse } (\text{fold } (\text{fun } a \ h \rightarrow \text{if } (\textit{pred} \ h) \ \text{then } h::a \ \text{else } a) \ [] \ \textit{lst})
 \]

 c. (12 pts) Write an OCaml function named \textit{rev_map} which takes a function \textit{f} and a list \textit{lst}, applies \textit{f} to every element \textit{lst}, and returns the results in a new list in reverse order. You must implement \textit{rev_map} as a single pass over the input list (i.e., you cannot first apply map, then reverse the result).
 Example: \textit{rev_map} \((\text{fun } x \rightarrow x+1)\) \([1;3;5;2;4] = [5;3;6;4;2]\)
 \[
 \text{let rev_map } f \ \textit{lst} = \text{fold } (\text{fun } a \ h \rightarrow (f \ h)::a) \ [] \ \textit{lst}
 \]