1. OCaml Polymorphic Types
 Consider a OCaml module Bst that implements a binary search tree:

 module Bst = struct
 type bst =
 Empty
 | Node of int * bst * bst
 let empty = Empty (* empty binary search tree *)
 let is_empty = function
 Empty -> true
 | Node (_, _, _) -> false
 let rec insert n = function
 Empty -> Node (n, Empty, Empty)
 | Node (m, left, right) ->
 if m = n then Node (m, left, right)
 else if n < m then Node(m, (insert n left), right)
 else Node(m, left, (insert n right))
 end

 a. Is insert tail recursive? Explain why or why not.
 No, since the return value for recursive call to insert cannot be used as
 the return value of the original call to insert. The return value is used to
 create a Node data type first, and the Node value is returned.

 b. Implement min as a tail-recursive function. Raise an exception for an empty bst.
 Any reasonable exception is fine.
 let rec min = function
 Empty -> (raise (Failure "min"))
 | Node (m, left, right) ->
 if is_empty left then m
 else min left

 (* Implement the following functions
 val min : bst -> int
 val remove : int -> bst -> bst
 val fold : ('a -> int -> 'a) -> 'a -> bst -> 'a
 val size : bst -> int
 *)

 let rec min = function
 (* return smallest value in bst *)
 | Node (m, left, right) ->
 if (is_empty left) then m
 else min left

 let rec remove n t =
 (* tree with n removed *)
 | Node (m, left, right) ->
 if m = n then Node (m, left, right)
 else if n < m then Node(m, (insert n left), right)
 else Node(m, left, (insert n right))

 let rec fold f a t =
 (* apply f to nodes of t in inorder *)
 | Node (m, left, right) ->
 if is_empty left then a
 else fold f (f a (insert n left)) right

 let size t =
 (* # of non-empty nodes in t *)
 | Node (m, left, right) ->
 if is_empty left then size left + 1
 else size left + size right
c. Implement remove. The result should still be a binary search tree.

```ocaml
let rec remove n = function
  | Empty -> Empty
  | Node (m, left, right) ->
    if m = n then (begin
      if (is_empty left) then right
      else if (is_empty right) then left
      else let x = min right in
        Node(x, left, remove x right)
      end
    )
  // OR
  // else let x = max left in
  // Node(x, remove x left, right)
  else if n < m then Node(m, (remove n left), right)
  else Node(m, left, (remove n right))
```

d. Implement fold as an inorder traversal of the tree so that the code

```ocaml
List.rev (fold (fun a m -> m::a) [] t)
```

will produce an (ordered) list of values in the binary search tree.

```ocaml
let rec fold f a n = match n with
  | Empty -> a
  | Node (m, left, right) -> fold f (fold f a left) m right
```

e. Implement size using fold.

```ocaml
let size t = fold (fun a m -> a+1) 0 t
```
2. Recursive Descent Parser in Ocaml

The example Ocaml recursive descent parser 15-parseArith_fact.ml employs a number of shortcuts. For instance, the function parseS handles the grammar rules for

\[S \rightarrow T + S | T \]

directly instead of first applying left factoring:

\[S \rightarrow T A A + S | \epsilon \]

However, we can still identify where code corresponding to parseA was inserted directly in the code for parseS, in the comments below:

```ocaml
let rec parseS lr =    (* parseS *)
  let x = parseT lr in    (* S T A *)
  match !lr with    (* parseA *)
    | ('+'::t) ->     (* if lookahead = First( + S ) *)
      lr := t;      (* A + S *)
      Sum (x,parseS lr)
    | _ -> x     (* A \epsilon *)
```

Similarly, the function parseF handles the grammar rules for

\[F \rightarrow U ! | U \]

directly instead of rewriting the grammar, creating the following productions:

\[F \rightarrow \ ?
B \rightarrow \ ! B | \epsilon \]

You must identify where code corresponding to parseB was inserted directly in the code for parseF in the comments below:

```ocaml
let rec parseF lr =   (* parseF *)
  let rec fHelper lr tmp =
    match !lr with   (* parseB *)
      | ('!'::t) ->   (* 1: if lookahead = First( ? ) *)
        lr := t;   (* 2: ? ? *)
        Fact (fHelper lr tmp)
      | _ -> tmp   (* 3: ? ? *)
    in let x = parseU lr in (fHelper lr x)  (* 4: ? ? *)
```

a. What rule should have been applied to the productions for F?

 Eliminate left recursion
 (e.g., change \(A \rightarrow A \ B | C \) to \(A \rightarrow C \ N \)
 \(N \rightarrow B \ N | \epsilon \))

b. What productions for F & B would be created by applying the rule?
 \(F \rightarrow U \ B \)
 \(B \rightarrow ! B | \epsilon \)

c. What sentential form should appear in place of ? in comment 1?
 \(! B \)

d. What production should appear in place of ? in comment 2?
 \(B \rightarrow ! B \)

e. What production should appear in place of ? in comment 3?
 \(B \rightarrow \epsilon \)

f. What production should appear in place of ? in comment 4?
 \(F \rightarrow U \ B \)
3. Context Free Grammars
 a. List the 4 components of a context free grammar.
 Terminals, non-terminals, productions, start symbol
 b. Describe the relationship between terminals, non-terminals, and productions.
 Productions are rules for replacing a single non-terminal with a string of terminals and non-terminals
 c. Define ambiguity.
 Multiple left-most (or right-most) derivations for the same string
 d. Describe the difference between scanning & parsing.
 Scanning matches input to regular expressions to produce terminals, parsing matches terminals to grammars to create parse trees

4. Describing Grammars
 a. Describe the language accepted by the following grammar:
 \[S \rightarrow abS | a \]
 \[(ab)^+a \]
 b. Describe the language accepted by the following grammar:
 \[S \rightarrow aSb | a^n b^n, n \geq 0 \]
 c. Describe the language accepted by the following grammar:
 \[S \rightarrow bSb | A \]
 \[A \rightarrow aA | \varepsilon \]
 \[b^n a^m b^n, n \geq 0 \]
 d. Describe the language accepted by the following grammar:
 \[S \rightarrow AS | B \]
 \[A \rightarrow aAc | Aa | \varepsilon \]
 \[B \rightarrow bBb | \varepsilon \]
 Strings of \(a\) & \(c\) with same or fewer \(c\)'s than \(a\)'s and no prefix has more \(c\)'s than \(a\)'s, followed by an even number of \(b\)'s
 e. Describe the language accepted by the following grammar:
 \[S \rightarrow S \text{ and } S \text{ or } S \text{ or } (S) \text{ or true } \text{ or false} \]
 Boolean expressions of true & false separated by and & or, with some expressions enclosed in parentheses
 f. Which of the previous grammars are left recursive?
 \(2d, 2e\)
 g. Which of the previous grammars are right recursive?
 \(2a, 2c, 2d, 2e\)
 h. Which of the previous grammars are ambiguous? Provide proof.
 Examples of multiple left-most derivations for the same string
 \(2d:\)
 \[S \Rightarrow AS \Rightarrow AaS \Rightarrow aS \Rightarrow aB \Rightarrow a \]
 \[S \Rightarrow AS \Rightarrow S \Rightarrow AS \Rightarrow AaS \Rightarrow aS \Rightarrow aB \Rightarrow a \]
 \(2e:\)
 \[S \Rightarrow S \text{ and } S \Rightarrow S \text{ and } S \text{ and } S \Rightarrow \text{true and } S \text{ and } S \text{ and } S \ => \text{true and true and } S \Rightarrow \text{true and true and true} \]
 \[S \Rightarrow S \text{ and } S \Rightarrow \text{true and } S \Rightarrow \text{true and true and true} \text{ and } S \Rightarrow \text{true and true and true} \]
5. Creating Grammars
 a. Write a grammar for a^x b^y, where x = y
 \[S \rightarrow aSb \mid \varepsilon \]
 b. Write a grammar for a^x b^y, where x > y
 \[S \rightarrow aL \quad L \rightarrow aL \mid aLa \mid \varepsilon \]
 c. Write a grammar for a^x b^y, where x = 2y
 \[S \rightarrow aaSb \mid \varepsilon \]
 d. Write a grammar for a^x b^y z, where z = x+y
 \[S \rightarrow aSa \mid L \quad L \rightarrow aL \mid aLa \mid aLb \mid \varepsilon \]
 e. Write a grammar for a^x b^y z, where z = x-y
 \[S \rightarrow aSa \mid L \quad L \rightarrow aLb \mid \varepsilon \]
 f. Write a grammar for all strings of a and b that are palindromes.
 \[S \rightarrow aSa \mid bSb \mid L \quad L \rightarrow a \mid b \mid \varepsilon \]
 g. Write a grammar for all strings of a and b that include the substring baa.
 \[S \rightarrow LbaaL \quad L \rightarrow aL \mid bL \mid \varepsilon \quad // L = any \]
 h. Write a grammar for all strings of a and b with an odd number of a’s and b’s.
 \[S \rightarrow EaEbE \mid EbEaE \quad E \rightarrow EaEaE \mid EbEbE \mid \varepsilon \quad SS \quad // E = even \#s \]
 i. Write a grammar for the “if” statement in OCaml
 \[S \rightarrow if E then E else E \mid if E then E \quad E \rightarrow S \mid expr \]
 j. Write a grammar for all lists in OCaml
 \[S \rightarrow [] \mid [E] \mid E :: S \quad E \rightarrow elem \mid S \quad // Ignores types, allows lists of lists \]
 k. Which of your grammars are ambiguous? Can you come up with an
 unambiguous grammar that accepts the same language?
 Grammar for 3h is ambiguous. An unambiguous grammar must exist
 since the language can be recognized by a deterministic finite automaton,
 and DFA -> RE -> Regular Grammar.
 Grammar for 3i is ambiguous. Multiple derivations for “if expr then if
 expr then expr else expr”. It is possible to write an unambiguous
 grammar by restricting some S so that no unbalanced if statement can be
 produced.

6. Derivations, Parse Trees, Precedence and Associativity
 For the following grammar: S \rightarrow S and S \mid true
 a. List 4 derivations for the string “true and true and true”.
 i. S \rightarrow S and S \Rightarrow S and S and S => true and true and true
 and S => true and true and true
 ii. S \rightarrow S and S \Rightarrow true and S => true and true and true
 and S => true and true and true
 iii. S \rightarrow S and S \Rightarrow S and true \Rightarrow S and true \Rightarrow S and true
 \Rightarrow true and true and true
 iv. S \rightarrow S and S \Rightarrow S and S and S => S and true \Rightarrow S and true
 \Rightarrow true and true and true
 v. S \rightarrow S and S \Rightarrow S and S and S => true and S and S => true and S and
 S \Rightarrow true and true and true
 vi. S \rightarrow S and S \Rightarrow S and S \Rightarrow S and true \Rightarrow true and true
 \Rightarrow true and true and true
vii. $S \Rightarrow S$ and $S \Rightarrow S$ and $S \Rightarrow S$ and $S \Rightarrow S$ and true and $S \Rightarrow S$ and true and true
IX. $S \Rightarrow S$ and $S \Rightarrow S$ and $S \Rightarrow S$ and $S \Rightarrow S$ and true
X. $S \Rightarrow S$ and $S \Rightarrow true$ and $S \Rightarrow true$ and $S \Rightarrow true$ and $S \Rightarrow true$ and true
XI. $S \Rightarrow S$ and $S \Rightarrow S$ and $S \Rightarrow S$ and $S \Rightarrow S$ and true
XII. $S \Rightarrow S$ and $S \Rightarrow S$ and $S \Rightarrow S$ and $S \Rightarrow S$ and true
XIII. $S \Rightarrow S$ and $S \Rightarrow S$ and $S \Rightarrow S$ and $S \Rightarrow S$ and true
XIV. $S \Rightarrow S$ and $S \Rightarrow S$ and $S \Rightarrow S$ and $S \Rightarrow S$ and true
XV. $S \Rightarrow S$ and $S \Rightarrow S$ and $S \Rightarrow S$ and $S \Rightarrow S$ and true
XVI. $S \Rightarrow S$ and $S \Rightarrow S$ and $S \Rightarrow S$ and $S \Rightarrow S$ and true

b. Label each derivation as left-most, right-most, or neither.
 i and ii are left-most derivations, iii and iv are right-most derivations, remaining derivations are neither

c. List the parse tree for each derivation
 Tree 1 = ii, iii, x, xi, Tree 2 = rest

Tree 1

```
  S
 /\  \
S S
 /\  \
true true
```

Tree 2

```
  S
 /\  \
S S
 /\  \
true true
```

d. What is implied about the associativity of “and” for each parse tree?
 Tree 1 => and is right-associative, Tree 2 => and is left-associative

For the following grammar: $S \rightarrow S$ and S $| S$ or S $| true$
e. List all parse trees for the string “true and true or true”
f. What is implied about the precedence/associativity of “and” and “or” for each parse tree?

 Tree 1 => or has higher precedence than and
 Tree 2 => and has higher precedence than or

g. Rewrite the grammar so that “and” has higher precedence than “or” and is right associative

 \[S \rightarrow S \text{ or } S \mid L \] // op closer to Start = lower precedence op
 \[L \rightarrow \text{true and } L \mid \text{true} \] // right recursive = right associative

7. Left factoring & eliminating left recursion

Rewrite the following grammars so they can be parsed by a predicative parser by eliminating left recursion and applying left factoring where necessary

a. \[S \rightarrow S + a \mid b \]
 \[S \rightarrow b L \]
 \[L \rightarrow + a L \mid \varepsilon \]

b. \[S \rightarrow S + a \mid S + b \mid c \]
 \[S \rightarrow c L \]
 \[L \rightarrow + a L \mid + b L \mid \varepsilon \]
 \[S \rightarrow c L \]
 \[L \rightarrow + M \mid \varepsilon \]
 \[M \rightarrow a L \mid b L \]

c. \[S \rightarrow S + a \mid S + b \mid \varepsilon \]
 \[S \rightarrow L \]
 \[L \rightarrow + a L \mid + b L \mid \varepsilon \]
 \[S \rightarrow L \]
 \[L \rightarrow + M \mid \varepsilon \]
 \[M \rightarrow a L \mid b L \]

d. \[S \rightarrow a b c \mid a \]
 \[S \rightarrow a L \]
 \[L \rightarrow b c \mid c \]
8. Parsing

For the problem, assume the term “predictive parser” refers to a top-down, recursive descent, non-backtracking predictive parser.

a. Consider the following grammar: $S\rightarrow S \mid S \mid S \mid true \mid false$

 i. Compute First sets for each production and nonterminal
First(true) = \{ “true” \}
First(false) = \{ “false” \}
First((S)) = \{ “(“ \}
First(S and S) = First(S or S) = First(S) = \{ “(“, “true”, “false” \}

ii. Explain why the grammar cannot be parsed by a predictive parser
First sets of productions intersect, grammar is left recursive
b. Consider the following grammar: S → abS | acS | c
i. Compute First sets for each production and nonterminal
First(abS) = \{ a \}
First(acS) = \{ a \}
First(c) = \{ c \}
First(S) = \{ a, c \}
ii. Show why the grammar cannot be parsed by a predictive parser.
First sets of productions overlap
First(abS) \cap First(acS) = \{ a \} \cap \{ a \} = \{ a \} \neq \emptyset
iii. Rewrite the grammar so it can be parsed by a predictive parser.
S → aL | c L → bS | cS
iv. Write a predictive parser for the rewritten grammar.
parse_S() {
 if (lookahead == “a”) {
 match(“a”); // S → aL
 parse_L();
 }
 else if (lookahead == “c”)
 match(“c”); // S → c
 }
 else error();
}
parse_L() {
 if (lookahead == “b”) {
 match(“b”); // L → bS
 parse_S();
 }
 else if (lookahead == “c”) {
 match(“c”); // L → cS
 parse_S();
 }
 else error();
}
c. Consider the following grammar: S → Sa | Sc | c
i. Show why the grammar cannot be parsed by a predictive parser.
First sets of productions intersect, grammar is left recursive
ii. Rewrite the grammar so it can be parsed by a predictive parser.
S → c L L → aL | cL | \epsilon
iii. Write a recursive descent parser for your new grammar
parse_S() {
if (lookahead == “c”) {
 match(“c”); // S → cL
 parse_L();
}
else error();
}
parse_L() {
 if (lookahead == “a”) {
 match(“a”); // L → aL
 parse_L();
 }
 else if (lookahead == “c”) {
 match(“c”); // L → cL
 parse_L();
 }
 else; // L → ε
}

d. Describe an abstract syntax tree (AST)
 Compact representations of parse trees with only essential parts

9. Automata
 a. Describe regular grammars.
 Grammars where all productions are of the form X → a or X → aY
 b. Describe the relationship between regular grammars and regular expressions.
 Regular grammars are exactly as powerful as regular expressions (and one can be converted to the other)
 c. Name features needed by automata to recognize
 i. Regular languages (i.e., languages recognized by regular grammars)
 DFA (automaton with finite # of states and transitions)
 ii. Context-free languages
 NFA and 1 stack
 iii. All binary numbers
 DFA (binary #s can be recognized by RE)
 iv. All binary numbers divisible by 2
 DFA (binary #s ending in 0 can be recognized by RE)
 v. All prime binary numbers
 DFA and 1 tape (can write a program to compute prime #s)
 d. Compare finite automata, pushdown automata, and Turing machines
 Pushdown automata are finite automata that can use 1 stack, Turing machines are finite automata that can use a tape (or 2 stacks). Turing machines > pushdown automata > finite automata in terms of computing power.
 e. Describe computability
 Problem that can be solved by algorithm of finite length
 f. Describe a Turing test
 When communicating by text, indistinguishable from human being