CMSC 330, Spring 2009, Quiz 3 Practice Problems

1. OCaml Polymorphic Types

Consider a OCaml module Bst that implements a binary search tree:

module Bst = struct
 type bst =
 | Empty
 | Node of int * bst * bst

 let empty = Empty (* empty binary search tree *)

 let is_empty = function (* return true for empty bst *)
 Empty -> true
 | Node (_, _, _) -> false

 let rec insert n = function (* insert n into binary search tree *)
 Empty -> Node (n, Empty, Empty)
 | Node (m, left, right) ->
 if m = n then Node (m, left, right)
 else if n < m then Node(m, (insert n left), right)
 else Node(m, left, (insert n right))

 (* Implement the following functions
 val min : bst -> int
 val remove : int -> bst -> bst
 val fold : ('a -> int -> 'a) -> 'a -> bst -> 'a
 val size : bst -> int
 *)

 let rec min = (* return smallest value in bst *)
 let rec remove n t = (* tree with n removed *)
 let rec fold f a t = (* apply f to nodes of t in inorder *)
 let size t = (* # of non-empty nodes in t *)

end

a. Is insert tail recursive? Explain why or why not.
b. Implement min as a tail-recursive function. Raise an exception for an empty bst. Any reasonable exception is fine.
c. Implement remove. The result should still be a binary search tree.
d. Implement fold as an inorder traversal of the tree so that the code
 List.rev (fold (fun a m -> m::a) [] t)
 will produce an (ordered) list of values in the binary search tree.
e. Implement size using fold.
2. Recursive Descent Parser in OCaml
 The example OCaml recursive descent parser 15-parseArith_fact.ml employs a number of shortcuts. For instance, the function parseS handles the grammar rules for
 \[S \rightarrow T + S \mid T \]
directly instead of first applying left factoring:
 \[S \rightarrow T \ A \ A \ A \ + S \mid \epsilon \]
However, we can still identify where code corresponding to parseA was inserted directly in the code for parseS, in the comments below:

```ocaml
let rec parseS lr =    (* parseS *)
   let x = parseT lr in    (* S T A *)
   match !lr with    (* parseA *)
      | ('+'::t) ->     (* if lookahead = First( + S ) *)
         lr := t;      (* A + S *)
         Sum (x,parseS lr)
      | _ -> x     (* A epsilon *)
```

Similarly, the function parseF handles the grammar rules for
 \[F \rightarrow U ! | U \]
directly instead of rewriting the grammar, creating the following productions:
 \[F \rightarrow ? \ B \rightarrow ? \]
You must identify where code corresponding to parseB was inserted directly in the code for parseF in the comments below:

```ocaml
let rec parseF lr =   (* parseF *)
   let rec fHelper lr tmp =
      match !lr with   (* parseB *)
         | ('!'::t) ->   (* 1: if lookahead = First( ? ) *)
         lr := t;   (* 2: ? ? *)
         Fact (fHelper lr tmp)
      | _ -> tmp   (* 3: ? ? *)
   in let x = parseU lr in (fHelper lr x)  (* 4: ? ? *)
```

a. What rule should have been applied to the productions for F?
b. What productions for F & B would be created by applying the rule?
c. What sentential form should appear in place of ? in comment 1?
d. What production should appear in place of ? in comment 2?
e. What production should appear in place of ? in comment 3?
f. What production should appear in place of ? in comment 4?

3. Context Free Grammars
 a. List the 4 components of a context free grammar.
 b. Describe the relationship between terminals, non-terminals, and productions.
 c. Define ambiguity.
 d. Describe the difference between scanning & parsing.

4. Describing Grammars
 a. Describe the language accepted by the following grammar:
 \[S \rightarrow abS \mid a \]
b. Describe the language accepted by the following grammar:
 \[S \rightarrow aSb \mid \varepsilon \]

c. Describe the language accepted by the following grammar:
 \[S \rightarrow bSb \mid A \quad A \rightarrow aA \mid \varepsilon \]

d. Describe the language accepted by the following grammar:
 \[S \rightarrow AS \mid B \quad A \rightarrow aAc \mid Aa \mid \varepsilon \quad B \rightarrow bBb \mid \varepsilon \]

e. Describe the language accepted by the following grammar:
 \[S \rightarrow S \text{ and } S \mid S \text{ or } S \mid (S) \mid \text{true} \mid \text{false} \]

f. Which of the previous grammars are left recursive?
g. Which of the previous grammars are right recursive?
h. Which of the previous grammars are ambiguous? Provide proof.
i. Write a grammar for \(a^x b^y\), where \(x = y\)
j. Write a grammar for \(a^x b^y\), where \(x > y\)
k. Write a grammar for \(a^x b^y\), where \(x = 2y\)
l. Write a grammar for \(a^x b^y a^z\), where \(z = x+y\)
m. Write a grammar for \(a^x b^y a^z\), where \(z = x-y\)
n. Write a grammar for all strings of \(a\) and \(b\) that are palindromes.
o. Write a grammar for all strings of \(a\) and \(b\) that include the substring \(bbaa\).
p. Write a grammar for all strings of \(a\) and \(b\) with an odd number of \(a\)'s and \(b\)'s.
q. Write a grammar for the “if” statement in OCaml
r. Write a grammar for all lists in OCaml
s. Which of your grammars are ambiguous? Can you come up with an unambiguous grammar that accepts the same language?

5. Derivations, Parse Trees, Precedence and Associativity
 For the following grammar: \(S \rightarrow S \text{ and } S \mid \text{true} \)
 a. List 4 derivations for the string “true and true and true”.
 b. Label each derivation as left-most, right-most, or neither.
 c. List the parse tree for each derivation
 d. What is implied about the associativity of “and” for each parse tree?

 For the following grammar: \(S \rightarrow S \text{ and } S \mid S \text{ or } S \mid \text{true} \)
 e. List all parse trees for the string “true and true or true”

 f. What is implied about the precedence/associativity of “and” and “or” for each parse tree?
 g. Rewrite the grammar so that “and” has higher precedence than “or” and is right associative

6. Left factoring & eliminating left recursion
 Rewrite the following grammars so they can be parsed by a predicative parser by eliminating left recursion and applying left factoring where necessary
 a. \(S \rightarrow S + a \mid b \)
 b. \(S \rightarrow S + a \mid S + b \mid c \)
 c. \(S \rightarrow S + a \mid S + b \mid \varepsilon \)
 d. \(S \rightarrow a b c \mid a c \)
7. Parsing

For the problem, assume the term “predictive parser” refers to a top-down, recursive descent, non-backtracking predictive parser.

a. Consider the following grammar: $S \to S$ and $S \mid S \lor (S) \mid true \mid false$
 i. Compute First sets for each production and nonterminal
 ii. Explain why the grammar cannot be parsed by a predictive parser

b. Consider the following grammar: $S \to abS \mid acS \mid c$
 i. Compute First sets for each production and nonterminal
 ii. Show why the grammar cannot be parsed by a predictive parser.
 iii. Rewrite the grammar so it can be parsed by a predictive parser.
 iv. Write a predictive parser for the rewritten grammar.

c. Consider the following grammar: $S \to Sa \mid Sc \mid c$
 i. Show why the grammar cannot be parsed by a predictive parser.
 ii. Rewrite the grammar so it can be parsed by a predictive parser.
 iii. Write a recursive descent parser for your new grammar

d. Describe an abstract syntax tree (AST)

8. Automata

a. Describe regular grammars.

b. Describe the relationship between regular grammars and regular expressions.

c. Name features needed by automata to recognize
 i. Regular languages (i.e., languages recognized by regular grammars)
 ii. Context-free languages
 iii. All binary numbers
 iv. All binary numbers divisible by 2
 v. All prime binary numbers

d. Compare finite automata, pushdown automata, and Turing machines

e. Describe computability

f. Describe a Turing test