Feb 26

(1) Describe an efficient algorithm that given an undirected graph G, determines a spanning tree of G whose largest edge weight is minimum, over all spanning trees of G. Give an argument justifying your algorithm.

(2) The diameter of a tree $T = (V,E)$ is given by

$$\max_{u,v \in V} \delta(u,v)$$

where $\delta(u,v)$ is the distance between u and v in the tree T. Give an $O(|V|)$ algorithm for computing the diameter of the tree. Write a proof of correctness for your algorithm.

(3) In a directed graph, a **get-stuck** vertex is one that has in-degree $|V| - 1$ and out-degree 0. Assume that the adjacency matrix representation is used. Design an $O(|V|)$ algorithm to determine if a given graph has a get-stuck vertex. (Yes, this problem can be solved without even looking at the entire input matrix.) Write a proof of correctness for your algorithm.

(4) Assume that we have a network (a connected undirected graph) in which each edge e_i has an associated bandwidth b_i. If we have a path P, from s to v, then the capacity of the path is defined to be the minimum bandwidth of all the edges that belong to the path P. We define $\text{capacity}(s,v) = \max_{P(s,v)} \text{capacity}(P)$. (Essentially, $\text{capacity}(s,v)$ is equal to the maximum capacity path from s to v.) Give an efficient algorithm to compute $\text{capacity}(s,v)$, for each vertex v; where s is some fixed source vertex. Show that your algorithm is “correct”, and analyze its running time. (Design something that is no more than $O(|V|^2)$, and with the right data structures takes $O(|E| \log |V|)$ time.)

(5) Let G be a directed graph. The vertices of G have been numbered 1…n (where n is the number of vertices in G). Let $\text{small}(i) = \min\{j|j$ is reachable from $i\}$. In other words, for a vertex numbered i, $\text{small}(i)$ is the smallest numbered vertex reachable from it. Design an $O(V + E)$ algorithm to compute $\text{small}(i)$ for all vertices in the graph.