CMSC 451: Design and Analysis of Algorithms
Spring 2009
http://www.cs.umd.edu/class/spring2009/cmsc451/

Instructor: Samir Khuller - Office: AVW 3369. Office phone: (301) 405-6765.
E-mail: samir@cs.umd.edu.
Office hours: Monday 3:00pm - 4:00pm and Thursday: 11:00am - 12:00am.

Class Time: TuTh 9:30 - 10:45, Room: CSI 1122

Teaching Assistant: Barna Saha - Office: AVW 1112. Office phone: (301) 405-4639 Office hours will be held in 1112 AVW.
Email: barna@cs.umd.edu.
Office Hours: Tue 4:00 - 5:00pm and Wed 4:00pm - 5:00pm.
The BEST way to contact the TA is to send her email.

Course Overview: This course presents the fundamental techniques for designing efficient computer algorithms, proving their correctness, and analyzing their complexity. General topics include graph algorithms, and basic algorithm design paradigms (such as divide-and-conquer, dynamic programming and greedy algorithms), lower bounds and NP-completeness.

Another book that you may be familiar with is the one by Thomas Cormen, Charles Leiserson, Ron Rivest, *Introduction to Algorithms*, McGraw Hill and MIT Press, 1990. There is a second edition out now (2001). Either of these books has comprehensive coverage of the material, and it will not hurt if you try to solve some of the problems from this book.

Prerequisites: CMSC 112, CMSC 150/250, and CMSC 351. Each student is expected to know the basic concepts of programming (e.g. loops, pointers, recursion), discrete mathematics (proof by induction, sets), simple data structures (lists, stacks, queues, trees, heaps), and calculus (logarithms, differentiation, integration). I will assume knowledge of algorithm analyses techniques (material normally covered in CMSC 351).

Course Work: Course work will consist of 6-8 homework assignments, a quiz and two exams (one midterm and a comprehensive final). Homework problems will be mathematically oriented.

Homeworks are to be turned in at the start of class on the due date. Since homework solutions will be handed out on the day the homework is due NO LATE HOMEWORKS WILL BE ACCEPTED. (In other words, hand in whatever you have finished. You are also welcome to turn in homeworks before the due date if you cannot come to class on the due date.) If you cannot come to class for some reason, please mail the homework to me (should be postmarked a day before the due date). If you cannot make it to class, you may submit the homework via email (send it to the TA before class). If you miss an exam due to sickness, please contact me before the exam and get a doctor’s note indicating the date and time of the visit.

All homeworks are to be done independently, with no help from the web, or other sources. If you have questions, please talk to the TA or the Instructor. Assignments are to be
written up NEATLY. Badly written assignments WILL NOT be graded. Please staple your homework (every semester students lose parts of homeworks due to them not being stapled). It is your responsibility to make sure that you pick up all homeworks and handouts. All course information and handouts will be available on the web page.

Grading: Final grades will be based on homework assignments, the quiz, the midterm exam, and the comprehensive final exam. The relative weights (these are subject to change) of these will be 20% for the homework total, 10% for the quiz, 30% for the midterm, and 40% for the final exam. The Instructor will make the use of the grading system that allows for + and – grades.

Syllabus: The topics and order listed below are tentative and subject to change.

1. General algorithms background, and examples of algorithms and problems.
2. Graph exploration: connected components, topological sorting, strongly connected components (6 lectures).
4. Divide and Conquer algorithms: geometric algorithms, selection, lower bounds for minimum and sorting, Strassen’s matrix multiplication (5 lectures).
6. Network flows and applications (2 lectures).
7. NP-completeness: introduction to reductions, the classes P and NP, NP-complete problems, approximation algorithms (6 lectures).