CMSC724: Data Warehouses

Amol Deshpande

University of Maryland, College Park

April 23, 2009
Outline

1. Overview
2. Variant Indexes
3. Data Cubes/Dynamat (Slides borrowed from Nick)
A (usually) stand-alone system that integrates data from everywhere

- Read-only, updated at night
- Geared toward business analytics, data mining etc...
Data Warehouses

- A (usually) stand-alone system that integrates data from everywhere
 - Read-only, updated at night
 - Geared toward business analytics, data mining etc...
- Heavily used and heavily **optimized**
 1. Materialized views (summary tables, data cubes)
 2. New types of indexes
 3. New join techniques geared toward “star” (or “snowflake”) schemas
 4. Compressed storage techniques
- Key observation: **Read-only, so updating not an issue**
Data Warehouses: Overview

OLAP operations include rollup (increasing the level of aggregation) and drill-down (decreasing the level of aggregation) along one or more dimension hierarchies.

There is more to building and maintaining a data warehouse than selecting an OLAP server and defining a schema and data structures (e.g., arrays) and implementing the OLAP multidimensional data model and operations. Special access and implementation methods are needed to efficiently implement the multidimensional data model and operations typical of multidimensional data warehouses.

Reconciling the business model with the data warehouse requires consolidating data from many heterogeneous sources: these might include external sources such as stock market feeds, in addition to several operational databases. The different sources might contain data of varying quality, or subject to different levels of completeness.

Decision support usually requires data that might be missing from the operational databases; for instance, understanding trends or making predictions requires historical data, whereas operational databases store only current data. Decision support systems require data that might be missing from the operational databases.

However, building an enterprise warehouse is a long and complex process, requiring extensive business modeling, and settling for the wrong business model is a bad idea. Some organizations are still trying to figure out what the business model is.

Some organizations are implementing an integrated enterprise warehouse that collects data from operational databases, external sources, and other internal sources.

This enterprise warehouse is implemented on standard or commercial DBMSs targeted for OLTP. It is for all these reasons that data warehouses are implemented separately from operational databases.

Data warehouses are implemented separately from operational databases from operational databases for several reasons: these might include external sources such as stock market feeds, in addition to several operational databases. The different sources might contain data of varying quality, or subject to different levels of completeness.

Data warehouses are implemented separately from operational databases.

Data warehouses might be implemented on standard or commercial DBMSs targeted for OLTP. It is for all these reasons that data warehouses are implemented separately from operational databases.

Figure 1. Data Warehousing Architecture

Figure: Overview (From Chaudhuri, Dayal; SIGMOD Rec., 1997)
Data Warehouses

- **Extract-Transform-Load (ETL)**
 - Data cleaning, auditing, integrity constraints
 - Semantic heterogeneity
 - Issues like entity resolution, schema mapping/matching, cleaning etc..

- **Load/Refresh:**
 - Typically done periodically
 - Batch loading, so can heavily optimize the indexes
 - E.g. If using a B+-tree, bulk-loading can result in much better indexes, than inserting one at a time
 - Refresh:
 - Usually done incrementally, at night or something

- **Real-time analysis? Typically not done today**
The multidimensional data model grew out of the view of business data popularized by PC spreadsheets. Although the multidimensional spreadsheet has attracted a lot of interest since it empowers the end user to analyze business data, this has not replaced traditional analysis by means of a managed query environment. These environments use stored procedures and defining attributes.

We shall briefly discuss some of the popular operations that are supported by the multidimensional spreadsheet and defining attributes. Consider the multidimensional spreadsheet.

Other operators related to pivoting are ranking, rollup, and drill-down. Figure 3 shows an example of a star schema.

Snowflake schemas provide a refinement of star schemas that reflect the multidimensional views of data. In this section, we describe the design of relational database systems where efficiency in querying and in loading data operations have to be mapped into relations and SQL queries. The multidimensional data model described above is implemented directly by MOLAP servers. We will describe these briefly in the next section. However, when a relational database server is used, the multidimensional data model must be converted to a relational data model. Most data warehouses use a star schema that consists of facts and dimensions. Snowflake schemas do not explicitly provide support for attribute hierarchies.

In this section, we describe the design of relational database systems where efficiency in querying and in loading data operations have to be mapped into relations and SQL queries. The multidimensional data model described above is implemented directly by MOLAP servers. We will describe these briefly in the next section. However, when a relational database server is used, the multidimensional data model must be converted to a relational data model. Most data warehouses use a star schema that consists of facts and dimensions. Snowflake schemas do not explicitly provide support for attribute hierarchies.

These environments use stored procedures and defining attributes.

Finally, there are a variety of data mining tools that are often used as front-end tools to data warehouses. One such operation is pivoting.
Data Warehouses: Snowflake Schema

Figure 4. A Snowflake Schema.

Figure: A Snowflake Schema (From Chaudhuri, Dayal; SIGMOD Record, 1997)
The Facts table is HUGE
- Dimension tables relatively small

Strong key-foreign key dependencies
- Each fact table tuple joins with exactly one tuple from each dimension table
- Critical in optimizations
Star and Snowflake Schemas

- The Facts table is HUGE
 - Dimension tables relatively small
- Strong key-foreign key dependencies
 - Each fact table tuple joins with exactly one tuple from each dimension table
 - Critical in optimizations
- Many queries are of the form:
 - Join the Facts table with some of the dimension tables
 - Selections on the dimension table attributes (e.g. state = 'MD')
 - Possibly selection on the fact table
 - Group by on some of the dimension table attributes (e.g. ProdName)
 - Aggregate on a main Facts table attribute (e.g. quantity)
Data Warehouses: Multi-dimensional Data

Figures 2. Multidimensional data

Figure: Multi-dimensional Data (From Chaudhuri, Dayal; SIGMOD Record, 1997)
OLAP: On-line Analytical Processing
 Contrast with: OLTP (transaction processing)
ROLAP: Relational OLAP
 OLAP built on top of relational databases (standard now)
MOLAP: Multi-dimensional OLAP
 Specialized database that stores data in multi-dimensional arrays
 Makes it easier to support Data Cube type queries
A hybrid between the two commonly used
SALES

<table>
<thead>
<tr>
<th>Model Year</th>
<th>Color</th>
<th>Sales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chevy 1990</td>
<td>red</td>
<td>5</td>
</tr>
<tr>
<td>Chevy 1990</td>
<td>white</td>
<td>87</td>
</tr>
<tr>
<td>Chevy 1990</td>
<td>blue</td>
<td>62</td>
</tr>
<tr>
<td>Chevy 1991</td>
<td>red</td>
<td>54</td>
</tr>
<tr>
<td>Chevy 1991</td>
<td>white</td>
<td>95</td>
</tr>
<tr>
<td>Chevy 1991</td>
<td>blue</td>
<td>49</td>
</tr>
<tr>
<td>Chevy 1992</td>
<td>red</td>
<td>31</td>
</tr>
<tr>
<td>Chevy 1992</td>
<td>white</td>
<td>54</td>
</tr>
<tr>
<td>Chevy 1992</td>
<td>blue</td>
<td>71</td>
</tr>
<tr>
<td>Ford 1990</td>
<td>red</td>
<td>64</td>
</tr>
<tr>
<td>Ford 1990</td>
<td>white</td>
<td>62</td>
</tr>
<tr>
<td>Ford 1990</td>
<td>blue</td>
<td>63</td>
</tr>
<tr>
<td>Ford 1991</td>
<td>red</td>
<td>52</td>
</tr>
<tr>
<td>Ford 1991</td>
<td>white</td>
<td>9</td>
</tr>
<tr>
<td>Ford 1991</td>
<td>blue</td>
<td>55</td>
</tr>
<tr>
<td>Ford 1992</td>
<td>red</td>
<td>27</td>
</tr>
<tr>
<td>Ford 1992</td>
<td>white</td>
<td>62</td>
</tr>
<tr>
<td>Ford 1992</td>
<td>blue</td>
<td>39</td>
</tr>
</tbody>
</table>

DATA CUBE

<table>
<thead>
<tr>
<th>Model Year</th>
<th>Color</th>
<th>Sales</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL</td>
<td>ALL</td>
<td>942</td>
</tr>
<tr>
<td>chev</td>
<td>ALL</td>
<td>510</td>
</tr>
<tr>
<td>ford</td>
<td>ALL</td>
<td>432</td>
</tr>
<tr>
<td>ALL</td>
<td>1990</td>
<td>343</td>
</tr>
<tr>
<td>ALL</td>
<td>1991</td>
<td>314</td>
</tr>
<tr>
<td>ALL</td>
<td>1992</td>
<td>285</td>
</tr>
<tr>
<td>ALL</td>
<td>red</td>
<td>165</td>
</tr>
<tr>
<td>ALL</td>
<td>white</td>
<td>273</td>
</tr>
<tr>
<td>ALL</td>
<td>blue</td>
<td>339</td>
</tr>
<tr>
<td>chev</td>
<td>1990</td>
<td>154</td>
</tr>
<tr>
<td>chev</td>
<td>1991</td>
<td>199</td>
</tr>
<tr>
<td>chev</td>
<td>1992</td>
<td>157</td>
</tr>
<tr>
<td>ford</td>
<td>1990</td>
<td>189</td>
</tr>
<tr>
<td>ford</td>
<td>1991</td>
<td>116</td>
</tr>
<tr>
<td>ford</td>
<td>1992</td>
<td>128</td>
</tr>
<tr>
<td>chev</td>
<td>ALL</td>
<td>91</td>
</tr>
<tr>
<td>chev</td>
<td>ALL</td>
<td>236</td>
</tr>
<tr>
<td>chev</td>
<td>ALL</td>
<td>183</td>
</tr>
<tr>
<td>ford</td>
<td>ALL</td>
<td>144</td>
</tr>
<tr>
<td>ford</td>
<td>ALL</td>
<td>133</td>
</tr>
<tr>
<td>ford</td>
<td>ALL</td>
<td>156</td>
</tr>
<tr>
<td>ALL</td>
<td>1990</td>
<td>69</td>
</tr>
<tr>
<td>ALL</td>
<td>1990</td>
<td>149</td>
</tr>
<tr>
<td>ALL</td>
<td>1990</td>
<td>125</td>
</tr>
<tr>
<td>ALL</td>
<td>1991</td>
<td>107</td>
</tr>
<tr>
<td>ALL</td>
<td>1991</td>
<td>104</td>
</tr>
<tr>
<td>ALL</td>
<td>1991</td>
<td>104</td>
</tr>
<tr>
<td>ALL</td>
<td>1992</td>
<td>59</td>
</tr>
<tr>
<td>ALL</td>
<td>1992</td>
<td>116</td>
</tr>
<tr>
<td>ALL</td>
<td>blue</td>
<td>110</td>
</tr>
</tbody>
</table>
Outline

1. Overview
2. Variant Indexes
3. Data Cubes/Dynamat (Slides borrowed from Nick)
Specialized indexes for supporting summary aggregate queries

Different types of indexes:
- Traditional Value-List Indexes
- Bitmap Indexes
- Projection Indexes
 - Very similar to Column-based storage (much research last few years)
- Bit-sliced Indexes
- Join Indexes

Key observation: Read-only database, so can build as many indexes as you want
Key idea: Given a property over a domain, the following two are interchangeable and complementary

- a list of values
- a bitmap over the domain
Key idea: Given a **property** over a domain, the following two are interchangeable and complementary
- a list of values
- a bitmap over the domain

In our case:
- Domain: The set of all RIDs
- Property: A predicate $R.a = 'Sports'$

If the number of RID that satisfy the property is:
- small: store as a list of RIDs
- large: store as a bitmap over the RIDs

B-tree Root Node for department

![B-tree Root Node Diagram]

<table>
<thead>
<tr>
<th>clothes</th>
<th>china</th>
<th>...</th>
<th>sports</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sports</td>
<td>101101</td>
<td>...</td>
<td>sports</td>
<td>01101</td>
</tr>
</tbody>
</table>

Value-List/Bitmap Index

- Indexing Definitions
 - In this section we examine traditional Value-List indexes and show how Bitmap indexes are more space-efficient.

- Bitmaps for the properties $C = v_1, \ldots, C = v_k$ are defined on T as a sequence of M bits. If a Bitmap B is defined on T as a sequence of M bits, then $B[j]$ is set to 1 if row $r[j]$ satisfies the property $C = v_k$, and 0 otherwise.

- Domain: The set of all RIDs
- Property: A predicate $R.a = 'Sports'$

- Bitmap index performance is important for database query performance, especially when Boolean operations such as AND, OR, and NOT are involved.
Value-List/Bitmap Index: Segmentation

- Each disk page can store 48K bits, so must partition the Facts table into 48K row partitions
- So
 - Each B+-Tree page contains a portion of the bitmap over the RIDs

If the number of 1's is small, convert to an RID-list. The tipping point is when the number of 1's is < 1/32 of the size. At that point, the RID-list exactly fits in the disk page (48000 \(\div\) 32 = 1500, 1500 \(*\) 4 = 6K). This is always true regardless of the page size. Segmentation also helps with space storage... if an entire segment is all 0's, don't store it.
Each disk page can store 48K bits, so must partition the Facts table into 48K row partitions.

So

- Each B+-Tree page contains a portion of the bitmap over the RIDs.

If the number of 1’s is small, convert to an RID-list.

- The tipping point is when the number of 1’s is < 1/32 of the size.
- At that point, the RID-list exactly fits in the disk page.
- \((48000/32 = 1500, 1500 \times 4 = 6\text{K})\)
- This is always true regardless of the page size.

Segmentation also helps with space storage... if an entire segment is all 0’s, don’t store it.
Selections on the table return bitmaps
 - AND, OR, NOT very fast on bitmaps
 - Result called a Foundset: \(B_f \) (the domain is the Facts Table)

Next step: Aggregate (recall almost all queries compute aggregates)
 - Can perform directly on the bitmap in some cases (COUNT)
 - Otherwise use projection indexes
 - OR use a bit-sliced index
Value-List/Bitmap Index: COUNT

- shcount: count the number of ones in the binary representation

Algorithm 2.1. Performing COUNT with a Bitmap

```c
/* Assume Bl[] is a short int array
   overlaying a Foundset Bitmap */
count = 0;
for (i = 0; i < SHNUM; i++)
  count += shcount[Bl[i]];
/* add count of bits for next short int */
```

Figure: Bitmap Index
Projection Indexes

- Simply a list of the values for one attribute for all values
- Like the leaf-level in a B+-tree (except no pointers)
- Each page contains the same number of values (so easier to identify the value for a specific tuple)
Other Indexes

- **Projection Indexes**
 - Simply a list of the values for one attribute for all values
 - Like the leaf-level in a B+-tree (except no pointers)
 - Each page contains same number of values (so easier to identify the value for a specific tuple)

- **Bit-sliced Index**
 - A set of bitmaps, one for each “position” in the binary representation of the values
 - Makes more sense for numerical/ordinal attributes
 - Can be used for computing aggregates like SUM

Table 3.5. Tabulation of Performance by Index Type for Aggregate Functions

<table>
<thead>
<tr>
<th>Aggregate</th>
<th>Value-List Index</th>
<th>Projection Index</th>
<th>Bit-Sliced Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>COUNT</td>
<td>Not needed</td>
<td>Not needed</td>
<td>Not needed</td>
</tr>
<tr>
<td>SUM</td>
<td>Not bad</td>
<td>Good</td>
<td>Best</td>
</tr>
<tr>
<td>AVG (SUM/COUNT)</td>
<td>Not bad</td>
<td>Good</td>
<td>Best</td>
</tr>
<tr>
<td>MAX and MIN</td>
<td>Best</td>
<td>Slow</td>
<td>Slow</td>
</tr>
<tr>
<td>MEDIAN, N-TILE</td>
<td>Usually Best</td>
<td>Not Useful</td>
<td>Sometimes Best2</td>
</tr>
<tr>
<td>Column-Product</td>
<td>Very Slow</td>
<td>Best</td>
<td>Very Slow</td>
</tr>
</tbody>
</table>

Note: Costs of the four plans in dollars, with kM rows

Assuming that I/O requires 10K instructions is:

$$f\frac{10,000+k}{1,000,000} \cdot \frac{1000}{10} = \$12.$$ Since $k > f \cdot 100$, ... as we loop through the values v in the range. This requires some forethought in the Query Optimizer if the table T has more than 1,000,000 rows.
Bitmap Join Index

- A bitmap index on the Facts table on a *dimension attribute*
- Recall that each Facts table tuple joins with exactly one tuple from any dimension table
- So each Facts table tuple has a unique value for a dimension attribute
 - In the example, might build a bitmap index on attribute "STATE" on Fact table
- Using Bitmap Join Index, can evaluate predicates directly on the Fact table
- *Grouping* also more efficient
Other Indexes

- **Clustering**
 - Can get better performance by appropriately clustering the Fact table

- **Groupset Indexes**
 - For better grouping performance
Other Indexes

- Clustering
 - Can get better performance by appropriately clustering the Fact table

- Groupset Indexes
 - For better grouping performance

- Many other optimizations commonly found in Data Warehouses
Other issues

- Using monetary cost as the metric
 - Useful in the real-world (see the 5-minute rule paper by Gray, Graefe in the Redbook)

- Bloom Filters
 - Can’t use them here... there is no “check” at the end to make sure the results are accurate

- Data Mining
 - Typically done outside the database, so the indexes don’t really help

- Applicability to operational databases
 - Not much... these techniques require too many indexes
 - An update would require changing all of those... prohibitive
Outline

1. Overview
2. Variant Indexes
3. Data Cubes/Dynamat (Slides borrowed from Nick)
OLAP-The Data Analysis Cycle

- User extracts data from database with query

- Then visualizes, analyzes data with desktop tools
The Data Cube
[Gray, Bosworth, Layman, Pirahesh ICDE 96]

- summarize multidimensional data for trend analysis

<table>
<thead>
<tr>
<th>Table 1: Weather</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (UCT)</td>
</tr>
<tr>
<td>27/11/94:1500</td>
</tr>
</tbody>
</table>

- groupby with statistical functions (avg, min, max, count, sum) aggregates over table sub-groups

```sql
select avg(temp) from weather
select time, altitude from weather
groupby time, altitude
```

- results in a new table

```sql
select location, sum(units) from inventory
group by location
having nation = "USA";
```
Problems with SQL Groupbys

- Histograms (aggregation over computed categories)

```sql
SELECT day, nation, MAX(Temp)
FROM Weather
GROUP BY CUBE
```

<table>
<thead>
<tr>
<th>Time (UCT)</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Altitude (m)</th>
<th>Temp. (c)</th>
<th>Pres. (mb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>96/6/1:1500</td>
<td>37:58:33N</td>
<td>122:45:28W</td>
<td>102</td>
<td>21</td>
<td>1009</td>
</tr>
<tr>
<td>96/6/7:1500</td>
<td>34:16:18N</td>
<td>27:05:55W</td>
<td>10</td>
<td>23</td>
<td>1024</td>
</tr>
</tbody>
</table>

Many more rows like the ones above and below
Problems with SQL Groupbys

- drill-down and roll-up

Table 3: Sales Roll Up by Model by Year by Color

<table>
<thead>
<tr>
<th>Model</th>
<th>Year</th>
<th>Color</th>
<th>Sales by Model by Year by Color</th>
<th>Sales by Model by Year</th>
<th>Sales by Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chevy</td>
<td>1994</td>
<td>black</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>white</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1995</td>
<td>black</td>
<td>85</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>white</td>
<td>115</td>
<td>200</td>
<td>290</td>
</tr>
</tbody>
</table>

Not relational (null values in the keys)

Table 4: Sales Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>Year</th>
<th>Color</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chevy</td>
<td>1994</td>
<td>black</td>
<td>50</td>
</tr>
<tr>
<td>Chevy</td>
<td>1994</td>
<td>white</td>
<td>40</td>
</tr>
<tr>
<td>Chevy</td>
<td>1994</td>
<td>ALL</td>
<td>90</td>
</tr>
<tr>
<td>Chevy</td>
<td>1995</td>
<td>black</td>
<td>85</td>
</tr>
<tr>
<td>Chevy</td>
<td>1995</td>
<td>white</td>
<td>115</td>
</tr>
<tr>
<td>Chevy</td>
<td>1995</td>
<td>ALL</td>
<td>200</td>
</tr>
<tr>
<td>Chevy</td>
<td>ALL</td>
<td>ALL</td>
<td>290</td>
</tr>
</tbody>
</table>

```sql
SELECT Model, ALL, ALL, SUM(Sales)
FROM Sales
WHERE Model = 'Chevy'
GROUP BY Model
UNION
SELECT Model, Year, ALL, SUM(Sales)
FROM Sales
WHERE Model = 'Chevy'
GROUP BY Model, Year
UNION
SELECT Model, Year, Color, SUM(Sales)
FROM Sales
WHERE Model = 'Chevy'
GROUP BY Model, Year, Color;
```
More problems with Groubys

- roll-up is asymmetric (e.g. does not aggregate by year or by color alone
- cross-tabulation (spreadsheets)

![Table 5: Chevy Sales Cross Tab](image)

- even if SQL syntax can be devised, a 6D cross-tab requires 64 groupby queries to generate it and 64 scans and sorts of the data
- most of these are not relational expressions but are in many report writers
CUBE: A Relational Aggregate Operator Generalizing Group By

The Data Cube and The Sub-Space Aggregates
Idea: N-dimensional Cube
Each Attribute is a Dimension

• N-dimensional Aggregate (sum(), max(), ...)
 ◆ fits relational model exactly:
 ➔ a₁, a₂,, aₙ, f(*)

• Super-aggregate over $N-1$ Dimensional sub-cubes
 ➔ ALL, a₂,, aₙ, f(*)
 ➔ a₃, ALL, a₃,, aₙ, f(*)
 ➔ ...
 ➔ a₁, a₂,, ALL, f(*)
 ◆ this is the $N-1$ Dimensional cross-tab.

• Super-aggregate over $N-2$ Dimensional sub-cubes
 ➔ ALL, ALL, a₃,, aₙ, f(*)
 ➔ ...
 ➔ a₁, a₂,, ALL, ALL, f(*).
Division of labor
Computation vs Visualization

- Relational system builds CUBE relation
 - aggregation best done close to data
 - filtering of data is possible
 - Cube computation may be recursive
 ➔ (e.g., percent of total, quartile,)

- Visualization System displays/explores the cube
An Example

SALES

<table>
<thead>
<tr>
<th>Model</th>
<th>Year</th>
<th>Color</th>
<th>Sales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chevy</td>
<td>1990</td>
<td>red</td>
<td>5</td>
</tr>
<tr>
<td>Chevy</td>
<td>1990</td>
<td>white</td>
<td>87</td>
</tr>
<tr>
<td>Chevy</td>
<td>1990</td>
<td>blue</td>
<td>62</td>
</tr>
<tr>
<td>Chevy</td>
<td>1991</td>
<td>red</td>
<td>54</td>
</tr>
<tr>
<td>Chevy</td>
<td>1991</td>
<td>white</td>
<td>95</td>
</tr>
<tr>
<td>Chevy</td>
<td>1991</td>
<td>blue</td>
<td>49</td>
</tr>
<tr>
<td>Chevy</td>
<td>1992</td>
<td>red</td>
<td>31</td>
</tr>
<tr>
<td>Chevy</td>
<td>1992</td>
<td>white</td>
<td>54</td>
</tr>
<tr>
<td>Chevy</td>
<td>1992</td>
<td>blue</td>
<td>71</td>
</tr>
<tr>
<td>Ford</td>
<td>1990</td>
<td>red</td>
<td>64</td>
</tr>
<tr>
<td>Ford</td>
<td>1990</td>
<td>white</td>
<td>62</td>
</tr>
<tr>
<td>Ford</td>
<td>1990</td>
<td>blue</td>
<td>63</td>
</tr>
<tr>
<td>Ford</td>
<td>1991</td>
<td>red</td>
<td>52</td>
</tr>
<tr>
<td>Ford</td>
<td>1991</td>
<td>white</td>
<td>9</td>
</tr>
<tr>
<td>Ford</td>
<td>1991</td>
<td>blue</td>
<td>55</td>
</tr>
<tr>
<td>Ford</td>
<td>1992</td>
<td>red</td>
<td>27</td>
</tr>
<tr>
<td>Ford</td>
<td>1992</td>
<td>white</td>
<td>62</td>
</tr>
<tr>
<td>Ford</td>
<td>1992</td>
<td>blue</td>
<td>39</td>
</tr>
</tbody>
</table>

DATA CUBE

<table>
<thead>
<tr>
<th>Model</th>
<th>Year</th>
<th>Color</th>
<th>Sales</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL</td>
<td>ALL</td>
<td>ALL</td>
<td>942</td>
</tr>
<tr>
<td>chevy</td>
<td>ALL</td>
<td>ALL</td>
<td>510</td>
</tr>
<tr>
<td>ford</td>
<td>ALL</td>
<td>ALL</td>
<td>432</td>
</tr>
<tr>
<td>ALL</td>
<td>1990</td>
<td>ALL</td>
<td>343</td>
</tr>
<tr>
<td>ALL</td>
<td>1991</td>
<td>ALL</td>
<td>314</td>
</tr>
<tr>
<td>ALL</td>
<td>1992</td>
<td>ALL</td>
<td>285</td>
</tr>
<tr>
<td>ALL</td>
<td>ALL</td>
<td>red</td>
<td>165</td>
</tr>
<tr>
<td>ALL</td>
<td>ALL</td>
<td>white</td>
<td>273</td>
</tr>
<tr>
<td>ALL</td>
<td>ALL</td>
<td>blue</td>
<td>339</td>
</tr>
<tr>
<td>chevy</td>
<td>ALL</td>
<td>1990</td>
<td>154</td>
</tr>
<tr>
<td>chevy</td>
<td>ALL</td>
<td>1991</td>
<td>199</td>
</tr>
<tr>
<td>chevy</td>
<td>ALL</td>
<td>1992</td>
<td>157</td>
</tr>
<tr>
<td>ford</td>
<td>1990</td>
<td>ALL</td>
<td>189</td>
</tr>
<tr>
<td>ford</td>
<td>1991</td>
<td>ALL</td>
<td>116</td>
</tr>
<tr>
<td>ford</td>
<td>1992</td>
<td>ALL</td>
<td>128</td>
</tr>
<tr>
<td>chevy</td>
<td>ALL</td>
<td>red</td>
<td>91</td>
</tr>
<tr>
<td>chevy</td>
<td>ALL</td>
<td>white</td>
<td>236</td>
</tr>
<tr>
<td>chevy</td>
<td>ALL</td>
<td>blue</td>
<td>183</td>
</tr>
<tr>
<td>ford</td>
<td>ALL</td>
<td>red</td>
<td>144</td>
</tr>
<tr>
<td>ford</td>
<td>ALL</td>
<td>white</td>
<td>133</td>
</tr>
<tr>
<td>ford</td>
<td>ALL</td>
<td>blue</td>
<td>156</td>
</tr>
<tr>
<td>ALL</td>
<td>1990</td>
<td>red</td>
<td>69</td>
</tr>
<tr>
<td>ALL</td>
<td>1990</td>
<td>white</td>
<td>149</td>
</tr>
<tr>
<td>ALL</td>
<td>1990</td>
<td>blue</td>
<td>125</td>
</tr>
<tr>
<td>ALL</td>
<td>1991</td>
<td>red</td>
<td>107</td>
</tr>
<tr>
<td>ALL</td>
<td>1991</td>
<td>white</td>
<td>104</td>
</tr>
<tr>
<td>ALL</td>
<td>1991</td>
<td>blue</td>
<td>104</td>
</tr>
<tr>
<td>ALL</td>
<td>1992</td>
<td>red</td>
<td>59</td>
</tr>
<tr>
<td>ALL</td>
<td>1992</td>
<td>white</td>
<td>116</td>
</tr>
<tr>
<td>ALL</td>
<td>1992</td>
<td>blue</td>
<td>110</td>
</tr>
</tbody>
</table>
Summary of the Cube

- CUBE operator generalizes relational aggregates
- Needs ALL value to denote sub-cubes
 - ALL values represent aggregation sets
- Needs generalization of user-defined aggregates
- Decorations and abstractions are interesting
- Computation has interesting optimizations
- Relationship to “rest of SQL” not fully worked out.
Materialized Views

- CUBE is a user abstraction
- How do we store/maintain/query it?
 - Option 1: Compute the entire CUBE over all possible attributes
 - Not feasible... too large
 - Maintenance cost will be formidable
CUBE is a user abstraction

How do we store/maintain/query it?

- Option 1: Compute the entire CUBE over all possible attributes
 - Not feasible... too large
 - Maintenance cost will be formidable

- Option 2: Compute from scratch
 - Don’t materialize anything... go straight to the source table for every query
 - Too much query latency
Materialized Views

- CUBE is a user abstraction
- How do we store/maintain/query it?
 - Option 1: Compute the entire CUBE over all possible attributes
 - Not feasible... too large
 - Maintenance cost will be formidable
 - Option 2: Compute from scratch
 - Don’t materialize anything... go straight to the source table for every query
 - Too much query latency
 - Option 3: Materialize a portion of the CUBE
 - Keep the most commonly required portions around
 - Try to answer all queries using that
Cube=\{\text{Materialized Views}\}
[Harinarayan, Rajaraman, Ullman 96]

- each groupby creates a “summary table” which is a materialized view with some dressing
- storing these summary tables speed up cube queries
- what to store and what not
- TPC-D example for sale analysis

1. part, supplier, customer (6M, i.e., 6 million rows)
2. part, customer (6M)
3. part, supplier (0.8M)
4. supplier, customer (6M)
5. part (0.2M)
6. supplier (0.01M)
7. customer (0.1M)
8. none (1)
• the query sales groupby part will be answered at
 - p - cost of scanning 0.2M records
 - pc - "" - 6.0M ""
 - psc - "" - 6.0M ""
• select the views that minimize overall query performance
 - need a good query model
 - need a good optimization criterion
Views grow exponentially

• in general 2^{**N} subspaces

Figure 6: Combined lattice.
DynaMat

Yannis Kotidis, Nick Roussopoulos (Sigmod 1999)

- **Conventional Data Warehouse**
 - pre-computed set view is static (too hard to select and adjust)
 - usually selected by an administrator
- **DynaMat proposed a framework for automatic management of views**
 - Unifies view selection & view refresh
 - Amortizes generation and maintenance cost over multiple uses of cached results
- **Techniques**
 - DynMat caches the results of every query
 - Each incoming query is evaluated against the cached results to see if any of those can be used
 - The captured set is updated within an update cycle to the extent possible
Online Operation

• Try to match each query from the view pool (Fragment Locator)
 ▪ Fragments are either single value predicates or complete ranges
 ▪ A Directory Index is maintained for efficient searches
• On the fly decide whether to cache the result in the pool (Admission Control Entity)
Materialized Range Fragments

- Materialized Results are restricted to one of:
 a) a full Range $R_i = \{min_d, max_d\}$
 b) a single value for d_i
 c) an empty range denotes a dimension that is not present in the query
- SQL queries are mapped to MR queries that are answered by cached MRFs
- MRFs are coarser than query results (expanded when necessary)
- No combination of MRFs are used to answer a query (more costly especially when MRFs are too small and/or overlap)
- An R-tree based index is used to identify possible MRFs that can answer the query—among those, the best fit is chosen
- The use of MRFs makes matching efficient.