Graph Data Structures

- Many-to-many relationship between elements
 - Each element has multiple predecessors
 - Each element has multiple successors
Graph Definitions

Node
- Element of graph
- State
 - List of adjacent/neighbor/successor nodes

Edge
- Connection between two nodes
- State
 - Endpoints of edge
Graph Definitions

- Directed graph
 - Directed edges
- Undirected graph
 - Undirected edges
Graph Definitions

- Weighted graph

 Weight (cost) associated with each edge
Graph Definitions

Path

- Sequence of nodes n_1, n_2, \ldots, n_k
- Edge exists between each pair of nodes n_i, n_{i+1}

Example

- A, B, C is a path
- A, E, D is not a path
Graph Definitions

- **Cycle**
 - Path that ends back at starting node
 - Example
 - A, E, A
 - A, B, C, D, E, A

- **Simple path**
 - No cycles in path

- **Acyclic graph**
 - No cycles in graph
Graph Definitions

- **Connected Graph**
 - Every node in the graph is reachable from every other node in the graph

- **Unconnected graph**
 - Graph that has several disjoint components

![Connected Graph Diagram](image)

![Unconnected Graph Diagram](image)
Graph Operations

Traversal (search)

- Visit each node in graph exactly once
- Usually perform computation at each node
- Two approaches
 - Breadth first search (BFS)
 - Depth first search (DFS)
Breadth-first Search (BFS)

Approach
- Visit all neighbors of node first
- View as series of expanding circles
- Keep list of nodes to visit in queue

Example traversal
1. n
2. a, c, b
3. e, g, h, i, j
4. d, f
Breadth-first Tree Traversal

Example traversals starting from 1

Left to right

Right to left

Random
Traversals Orders

Order of successors

- **For tree**
 - Can order children nodes from left to right

- **For graph**
 - Left to right doesn’t make much sense
 - Each node just has a set of successors and predecessors; there is no order among edges

For breadth first search

- Visit all nodes at distance k from starting point
- Before visiting any nodes at (minimum) distance k+1 from starting point
Depth-first Search (DFS)

Approach
- Visit all nodes on path first
- **Backtrack** when path ends
- Keep list of nodes to visit in a stack

Example traversal
1. N
2. A
3. B, C, D, …
4. F…
Depth-first Tree Traversal

Example traversals from 1 (preorder)

Left to right

Right to left

Random
Traversals Algorithms

Issue
- How to avoid revisiting nodes
- Infinite loop if cycles present

Approaches
- Record set of visited nodes
- Mark nodes as visited
Traversal – Avoid Revisiting Nodes

- **Record set of visited nodes**
 - Initialize \(\{ \text{Visited} \} \) to empty set
 - Add to \(\{ \text{Visited} \} \) as nodes is visited
 - Skip nodes already in \(\{ \text{Visited} \} \)

\[V = \emptyset \]

\[V = \{ 1 \} \]

\[V = \{ 1, 2 \} \]
Traversals – Avoid Revisiting Nodes

Mark nodes as visited

- Initialize tag on all nodes (to False)
- Set tag (to True) as node is visited
- Skip nodes with tag = True
Traversal Algorithm Using Sets

\{ \text{Visited} \} = \emptyset
\{ \text{Discovered} \} = \{ \text{1st node} \}

while \(\{ \text{Discovered} \} \neq \emptyset \)
 take node \(X \) out of \{ \text{Discovered} \}
 if \(X \) not in \{ \text{Visited} \}
 add \(X \) to \{ \text{Visited} \}
 for each successor \(Y \) of \(X \)
 if (\(Y \) is not in \{ \text{Visited} \})
 add \(Y \) to \{ \text{Discovered} \}
Traversal Algorithm Using Tags

for all nodes X

set X.tag = False

{ Discovered } = { 1st node }

while ({ Discovered } ≠ ∅)

take node X out of { Discovered }

if (X.tag = False)

set X.tag = True

for each successor Y of X

if (Y.tag = False)

add Y to { Discovered }
BFS vs. DFS Traversal

- Order nodes taken out of \{ \text{Discovered} \} key

- Implement \{ \text{Discovered} \} as Queue
 - First in, first out
 - Traverse nodes breadth first

- Implement \{ \text{Discovered} \} as Stack
 - First in, last out
 - Traverse nodes depth first
BFS Traversal Algorithm

for all nodes X
 X.tag = False

put 1st node in Queue

while (Queue not empty)
 take node X out of Queue
 if (X.tag = False)
 set X.tag = True
 for each successor Y of X
 if (Y.tag = False)
 put Y in Queue
DFS Traversal Algorithm

for all nodes X
 X.tag = False

put 1st node in Stack

while (Stack not empty)
 pop X off Stack
 if (X.tag = False)
 set X.tag = True
 for each successor Y of X
 if (Y.tag = False)
 push Y onto Stack
Example

Let’s do a BFS/DFS using the following graph (start vertex A)
Recursive Graph Traversal

- Can traverse graph using recursive algorithm
 - Recursively visit successors

Approach

Visit (X)

for each successor Y of X

Visit (Y)

- Implicit call stack & backtracking
 - Results in depth-first traversal
Recursive DFS Algorithm

Traverse()
 for all nodes X
 set X.tag = False
 Visit (1st node)
 Visit (X)
 set X.tag = True
 for each successor Y of X
 if (Y.tag = False)
 Visit (Y)