CMSC 132: Object-Oriented Programming II

Algorithmic Complexity I

Department of Computer Science
University of Maryland, College Park
Algorithm Efficiency

- Efficiency
 - Amount of resources used by algorithm
 - Time, space

- Measuring efficiency
 - Benchmarking
 - Asymptotic analysis
Benchmarking

Approach
- Pick some desired inputs
- Actually run implementation of algorithm
- Measure time & space needed

Industry benchmarks
- SPEC – CPU performance
- MySQL – Database applications
- WinStone – Windows PC applications
- MediaBench – Multimedia applications
- Linpack – Numerical scientific applications
Benchmarking

Advantages
- Precise information for given configuration
 - Implementation, hardware, inputs

Disadvantages
- Affected by configuration
 - Data sets (often too small)
 - A dataset that was the right size 3 years ago is likely too small now
- Hardware
- Software
 - Affected by special cases (biased inputs)
 - Does not measure intrinsic efficiency
Asymptotic Analysis

Approach
- Mathematically analyze efficiency
- Calculate time as function of input size n
 - $T \approx O(f(n))$
 - T is on the order of $f(n)$
 - “Big O” notation

Advantages
- Measures intrinsic efficiency
- Dominates efficiency for large input sizes
- Programming language, compiler, processor irrelevant
Search Example

Number guessing game

- Pick a number between 1…n
- Guess a number
- Answer “correct”, “too high”, “too low”
- Repeat guesses until correct number guessed
Linear Search Algorithm

Algorithm

- Guess number = 1
- If incorrect, increment guess by 1
- Repeat until correct

Example

- Given number between 1…100
- Pick 20
- Guess sequence = 1, 2, 3, 4 … 20
- Required 20 guesses
Linear Search Algorithm

Analysis of # of guesses needed for 1…n

- If number = 1, requires 1 guess
- If number = n, requires n guesses
- On average, needs n/2 guesses
- Time = O(n) = Linear time
Binary Search Algorithm

Algorithm

- Set low and high to be lowest and highest possible value
- Guess middle = \((\text{low}+\text{high})/2\)
- If too large, set high = middle-1
- If too small, set low = middle+1
- Repeat until guess correct
Binary Search Algorithm

Example

- Given number between 1…100
- Secret number we are trying to find is 20

Guesses

- low = 1, high = 100, guess 50, Answer = too large
- low = 1, high = 49, guess 25, Answer = too large
- low = 1, high = 24, guess 12, Answer = too small
- low = 13, high = 24, guess 18, Answer = too small
- low = 19, high = 24, guess 21, Answer = too large
- low = 19, high = 20, guess 19, Answer = too small
- low = 20, high = 20, guess 20, Answer = correct
- Required 7 guesses
Binary Search Algorithm

Analysis of # of guesses needed for 1…n

- If number = n/2, requires 1 guess
- If number = 1, requires log₂(n) guesses
- If number = n, requires log₂(n) guesses
- On average, needs log₂(n) guesses
- Time = O(log₂(n)) = O(log(n)) = Log time
Search Comparison

For number between 1…100
- Simple algorithm = 50 steps
- Binary search algorithm = $\log_2(n) = 7$ steps

For number between 1…100,000
- Simple algorithm = 50,000 steps
- Binary search algorithm = $\log_2(n)$ (about 17 steps)

Binary search is much more efficient!
Asymptotic Complexity

Comparing two linear functions

<table>
<thead>
<tr>
<th>Size</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\frac{n}{2})</td>
</tr>
<tr>
<td>64</td>
<td>32</td>
</tr>
<tr>
<td>128</td>
<td>64</td>
</tr>
<tr>
<td>256</td>
<td>128</td>
</tr>
<tr>
<td>512</td>
<td>256</td>
</tr>
</tbody>
</table>
Asymptotic Complexity

- Comparing two functions
 - \(n/2 \) and \(4n+3 \) behave similarly
 - Run time roughly doubles as input size doubles
 - Run time increases linearly with input size

- For large values of \(n \)
 - \(\frac{\text{Time}(2n)}{\text{Time}(n)} \) approaches exactly 2

- Both are \(O(n) \) programs
Asymptotic Complexity

Comparing two log functions

<table>
<thead>
<tr>
<th>Size</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>log(_2)(n)</td>
</tr>
<tr>
<td>64</td>
<td>6</td>
</tr>
<tr>
<td>128</td>
<td>7</td>
</tr>
<tr>
<td>256</td>
<td>8</td>
</tr>
<tr>
<td>512</td>
<td>9</td>
</tr>
</tbody>
</table>
Asymptotic Complexity

Comparing two functions

- $\log_2(n)$ and $5 \times \log_2(n) + 3$ behave similarly
- Run time roughly increases by constant as input size doubles
- Run time increases logarithmically with input size

For large values of n

- $\text{Time}(2n) - \text{Time}(n)$ approaches constant
- Base of logarithm does not matter
 - Simply a multiplicative factor
 - \[\log_a N = \left(\log_b N \right) / \left(\log_b a \right) \]
- Both are $O(\log(n))$ programs
Asymptotic Complexity

Comparing two quadratic functions

<table>
<thead>
<tr>
<th>Size</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n^2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>64</td>
</tr>
<tr>
<td>16</td>
<td>256</td>
</tr>
</tbody>
</table>
Asymptotic Complexity

Comparing two functions

- \(n^2 \) and \(2n^2 + 8 \) behave similarly
- Run time roughly increases by 4 as input size doubles
- Run time increases quadratically with input size

For large values of \(n \)

- \(\frac{\text{Time}(2n)}{\text{Time}(n)} \) approaches 4

Both are \(O(n^2) \) programs
Big-O Notation

Represents

- Upper bound on number of steps in algorithm
- For sufficiently large input size
- Intrinsic efficiency of algorithm for large inputs

![Graph showing # steps vs. input size with O(...) and f(n) curves.](image)
Formal Definition of Big-O

Function $f(n)$ is $O(g(n))$ if

- For some positive constants M, N_0
- $M \times g(n) \geq f(n)$, for all $n \geq N_0$

Intuitively

- For some coefficient M & all data sizes $\geq N_0$
 - $M \times g(n)$ is always greater than $f(n)$
Big-O Examples

5n + 1000 \Rightarrow O(n)

Select M = 6, N_0 = 1000

For n \geq 1000

6n \geq 5n + 1000 is always true

Example \Rightarrow for n = 1000

6000 \geq 5000 + 1000
Big-O Examples

\[2n^2 + 10n + 1000 \Rightarrow O(n^2) \]

- Select \(M = 4, N_0 = 100 \)
- For \(n \geq 100 \)
 - \(4n^2 \geq 2n^2 + 10n + 1000 \) is always true
- Example \(\Rightarrow \) for \(n = 100 \)
 - \(40000 \geq 20000 + 1000 + 1000 \)
Observations

For large values of n

- Any $O(\log(n))$ algorithm is faster than $O(n)$
- Any $O(n)$ algorithm is faster than $O(n^2)$

Asymptotic complexity is fundamental measure of efficiency
Asymptotic Complexity Categories

<table>
<thead>
<tr>
<th>Complexity</th>
<th>Name</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)</td>
<td>Constant</td>
<td>Array access</td>
</tr>
<tr>
<td>O(log(n))</td>
<td>Logarithmic</td>
<td>Binary search</td>
</tr>
<tr>
<td>O(n)</td>
<td>Linear</td>
<td>Largest element</td>
</tr>
<tr>
<td>O(n log(n))</td>
<td>N log N</td>
<td>Optimal sort</td>
</tr>
<tr>
<td>O(n^2)</td>
<td>Quadratic</td>
<td>2D Matrix addition</td>
</tr>
<tr>
<td>O(n^3)</td>
<td>Cubic</td>
<td>2D Matrix multiply</td>
</tr>
<tr>
<td>O(n^k)</td>
<td>Polynomial</td>
<td>Linear programming</td>
</tr>
<tr>
<td>O(k^n)</td>
<td>Exponential</td>
<td>Integer programming</td>
</tr>
<tr>
<td>O(n!)</td>
<td>Factorial</td>
<td>Brute-force search TSP</td>
</tr>
<tr>
<td>O(n^n)</td>
<td>N to the N</td>
<td></td>
</tr>
</tbody>
</table>

From smallest to largest

For size n, constant $k > 1$
Comparison of Complexity

A Comparison of Orders

- n
- $\frac{1}{2}n^2$
- n^3

$f(x)$ vs n
Complexity Category Example

![Graph showing complexity categories](image)

- **Problem Size**
- **# of Solution Steps**
- **2^n**
- **n^2**
- **$n \log(n)$**
- **n**
- **$\log(n)$**
Complexity Category Example

- Problem Size
- # of Solution Steps
 - 2^n
 - n^2
 - $n \log(n)$
 - n
 - $\log(n)$
Calculating Asymptotic Complexity

As \(n \) increases

- Highest complexity term dominates
- Can ignore lower complexity terms

Examples

- \(2n + 100 \) \(\Rightarrow O(n) \)
- \(n \log(n) + 10n \) \(\Rightarrow O(n\log(n)) \)
- \(\frac{1}{2}n^2 + 100n \) \(\Rightarrow O(n^2) \)
- \(n^3 + 100n^2 \) \(\Rightarrow O(n^3) \)
- \(\frac{1}{100}2^n + 100n^4 \) \(\Rightarrow O(2^n) \)
Complexity Examples

2n + 100 ⇒ O(n)
Complexity Examples

$\frac{1}{2} n \log(n) + 10 n \Rightarrow O(n\log(n))$
Complexity Examples

\(\frac{1}{2} n^2 + 100 n \Rightarrow O(n^2) \)
Complexity Examples

$\frac{1}{100} 2^n + 100 n^4 \Rightarrow O(2^n)$
Types of Case Analysis

- Can analyze different types (cases) of algorithm behavior
- Types of analysis
 - Best case
 - Worst case
 - Average case
 - Amortized
Types of Case Analysis

- **Best case**
 - Smallest number of steps required
 - Not very useful
 - Example ⇒ Find item in first place checked
Types of Case Analysis

Worst case

- Largest number of steps required
- Useful for upper bound on worst performance
 - Real-time applications (e.g., multimedia)
 - Quality of service guarantee
- Example \Rightarrow Find item in last place checked
Quicksort Example

Quicksort

- One of the fastest comparison sorts
- Frequently used in practice

Quicksort algorithm

- Pick pivot value from list
- Partition list into values smaller & bigger than pivot
- Recursively sort both lists
Quicksort Example

Quicksort properties

- Average case = $O(n \log(n))$
- Worst case = $O(n^2)$
 - Pivot \approx smallest / largest value in list
 - Picking from front of nearly sorted list

Can avoid worst-case behavior

- Select random pivot value
Types of Case Analysis

- Average case
 - Number of steps required for “typical” case
 - Most useful metric in practice
 - Different approaches
 - Average case
 - Expected case
Approaches to Average Case

■ **Average case**
 - **Average over all possible inputs**
 - Assumes all inputs have the same probability
 - **Example**
 - Case 1 = 10 steps, Case 2 = 20 steps
 - Average = 15 steps

■ **Expected case**
 - **Weighted average over all possible inputs**
 - Based on probability of each input
 - **Example**
 - Case 1 (90%) = 10 steps, Case 2 (10%) = 20 steps
 - Average = 11 steps
Average Case Example

Example problem

Average # of comparisons needed to find a number in the (sorted) array \(A[] = \{1, 4, 8, 12, 15\} \) using

- Linear search
 - Start from beginning, compare elements one at a time

- Binary search
 - Start from middle of array at index \(k \), compare element
 - If not element, repeat for top or bottom half of remaining array depending on whether element is smaller or greater than \(A[k] \)
Average Case : Linear Search

Algorithm

Find # of comparisons needed for each case

- 1 → 1 comparison (1)
- 4 → 2 comparisons (1, 4)
- 8 → 3 comparisons (1, 4, 8)
- 12 → 4 comparisons (1, 4, 8, 12)
- 15 → 5 comparisons (1, 4, 8, 12, 15)

Calc average = total # of comparisons / # cases

- Total # comparisons = 1 + 2 + 3 + 4 + 5 = 15
- # cases = 5
- Average = 3 comparisons / number
Average Case : Binary Search

Algorithm

- Find # of comparisons needed for each case
 - 1 → 3 comparisons (8, 4, 1)
 - 4 → 2 comparisons (8, 4)
 - 8 → 1 comparisons (8)
 - 12 → 2 comparisons (8, 12)
 - 15 → 3 comparisons (8, 12, 15)

- Calc average = total # of comparisons / # cases
 - Total # comparisons = 3 + 2 + 1 + 2 + 3 = 11
 - # cases = 5
 - Average = 2.2 comparisons / number
Average Case Example

Example problem 2

Average # of comparisons needed to find a number in a sorted array A[n] of size n using

- Linear search
- Binary search

For simplicity, we assume elements are stored in A[1] … A[n]
Average Case : Linear Search

Algorithm

- Find # of comparisons needed for each case
 - ...

- Calc average = total # of comparisons / # cases
 - Total # comparisons = 1 + 2 + ... + n = \(\frac{1}{2} n^2 + 1 \)
 - # cases = n
 - Average ≈ \(\frac{1}{2} n \) comparisons / number
Algorithm

Find # of comparisons needed for each case

- $A[n/2]$ → 1 comp $(A[n/2])$
- ...
- $A[1], A[3]...A[n] \rightarrow \log_2(n)$ comparisons
 $(A[n/2], A[n/4], A[n/8]...A[1])$

Calc average = total # of comparisons / # cases

- Total # comparisons = $n/2 \times \log_2(n) +$
 $n/4 \times \log_2(n) - 1 + ... + 1 = n \log_2(n)$
- # cases = n
- Average $\approx \log_2(n)$ comparisons / number
Sample problem

Given an array a of integers

- find the subrange that has the maximum sum
 - e.g., find low, high that maximizes $a[\text{low}] + a[\text{low}+1] + ... + a[\text{high}]$
 - only non empty ranges (low \leq high)
 - If a contained only nonnegative integers, would be low = 0, high = a.length -1
 - but a can contain negative numbers
 - Can assume that arithmetic overflow isn't an issue
public static int findBestRange(int[] a) {
 int bestSum = a[0];
 for (int low = 0; low < a.length; low++)
 for (int high = low; high < a.length; high++) {
 int sum = 0;
 for (int i = low; i <= high; i++) sum += a[i];
 if (bestSum < sum)
 bestSum = sum;
 }
 return bestSum;
}

// What is the complexity of the algorithm used here?
Can you find a better algorithm?